HP_TmpIt_Extened_final

Download Report

Transcript HP_TmpIt_Extened_final

Manufacturability and
Computability at the
Nano-Scale
Frontiers of Extreme Computing
Stan Williams
October 25, 2005
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice
"The purpose of QSR is to perform
fundamental research in physical science
with a strategic intent for hp
– to create new technologies that will be
important to the company on a
10+ year time frame."
Discover + Invent
7/17/2015
2
For a more detailed discussion of this work, see
Applied Physics A 80, March 2005
“Nanoelectronics” Special Issue
Journal of Applied Physics 97, #034301 (2005)
2005 WSJ Technology Innovation Award
7/17/2015
3
Fabrication by Nanoimprint
Gun-Young Jung
Inkyu Park (Intern)
Wei Wu
Zhaoning Yu
William Tong
S.-Y. Wang
Hylke Wiersma
7/17/2015
4
QSR Hyper Moore’s Law Progress
16 k
1k
2005
64
2004
1
2003
2002
7/17/2015
5
Lithography Red Brick Wall - 2010
QSR > 13 years ahead!
International Technology Roadmap for Semiconductors 2004
year
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
DRAM
90
80
70
65
57
50
45
40
35
32
28
25
22
20
18
½ pitch
nm
30 nm
7/17/2015
17 nm
6
G4 nanoimprinter: Total cost $300k
1st
NIL
2nd
NIL
10 mm
Wei Wu
•Much more cost-effective than any commercial nanoimprinter
•0.5 mm alignment accuracy demonstrated
•Targeting 10 nm alignment accuracy (with J. Gao & C. Picciotto)
•Step & repeat compatible design
7/17/2015
7
Architecture
Phil Kuekes
Greg Snider
Warren Robinett
+ITR
Gadiel Seroussi
Ronnie Roth
7/17/2015
8
Tunneling-Switch
Address
Crossbar
Circuits
lines
US Patents 6128214, 6256767, 6314019
Memory
1
Switch
Data
lines
Abstraction of a Field-Programmable Gate Array
7/17/2015
9
Switchable Tunneling Resistor
Ti
Device =
Molecule
+ Electrodes
Current (mA)
Pt
10
Switch off
"0"
7/17/2015
5
0
Switch on
"1"
-5
-10
Read bit
-2.0
-1.0
0.0
Voltage (V)
1.0
(measure
resistance)
10
Communicate with the nanowires
selected
column
k-bit
address
memory grid
selected
row
selected
memory
cell
k-bit
address
7/17/2015
row
selector
(demux)
column
selector
(demux)
11
Use coding theory to design circuits!
•
Protecting messages
Noise
corrupted
estimate of
codeword
message
message
codeword
Encoder Y Channel Y' Decoder
A
A'
A
k bits
n bits
n bits
k bits
Defects
message
A
k bits
codeword
Encoder U
n bits
Protecting calculations?
7/17/2015
Decoder 0
Decoder 1
Decoder 2k-2
output
S
2k bits
Decoder 2k-1
12
Four kbit Cross Bar Memory with
Mux/Demux
66x66 cross bar
memory @30 nm
half-pitch
Address lines
Mux/demux
*Mux/demux propramming done by E-beam burning
7/17/2015
13
No Gain,
No Logic?
7/17/2015
14
RESTORE
& INVERT
ENABLE
1
Controls (V)
SW1
C1
2
Clock /
control
C1
C2
SET 1
SET 2
RESET
TUNNELING SWITCH LATCH: EXPT DATA
SW2
E
0
-1
1
C2
0
D
Data
input
Q
Data
out
-1
-2
200
SW1
Data (V)
0.5
SW2
0
Test 1
input +0.5V
out -0.46V
-0.25
100
-0.5
Test 2
input -0.5V
out +0.50V
0.5
0
0
Data (V)
Current (uA)
500
0.25
-500
-100
-1
0
Voltage (V)
1
0.25
0
-0.25
-1
0
Voltage (V)
1
-0.5
0
Duncan Stewart
7/17/2015
2
4
6
8
Time (s)
10
12
15
Expt: Latch works!
Voltage (V)
0.5
0.4
Trial 1
0.3
3
0.2
5
Signal restoration
Inversion, if desired
>100mV operating margin
0.1
0.0
-0.1
-0.2
6
-0.3
4
-0.4
2
No nanoscale transistor!
-0.5
Input
Output
J. Appl. Phys. Feb 1, 2005
7/17/2015
16
The Tunneling-Switch Latch Provides
Logical State Storage
Signal Restoration
Signal Inversion (Logical NOT)
(with no need for a nanoscale transistor)
Universal Computation!
(Finite State Machine with wired ANDs and ORs)
7/17/2015
17
Area comparison of NAND gates
CMOS NAND gate
Area = 36×(FP)2
= 1.2m2 @ 90 nm hp
7/17/2015
SIMPL NAND gate
Area = 3×(FP)2
= 0.01m2 @ 30 nm hp
No VDD, no static power!
Low dynamic power
Register and Logic
Permute inputs and outputs
18
1 x 17 Latch and Logic Array
7/17/2015
19
Experimentally measured NAND truth table –
Output on Rpull down measured at indicated Step #
VA
VC
VB
Output
Rpull down
Driving
Junction A
7/17/2015
Receiving
Junction
Driving
Junction B
Junction A
Junction B
Rpull down
Step #
0
0
1
10
0
1
1
19
1
1
0
28
1
0
1
37
20
Experimental V vs. t data for NAND demonstration
NAND Function tristate drive, Location 41x, 39y, sweep 2
10
5
8
4
Junction 4,5,6 voltaages [V]
1
1
3
4
2
2
1
0
0
0
5
10
15
20
25
0
30
35
-2
-1
Junction 4
-4
Junction 5
Junction 6
-6
Output
-8
-2
-3
-4
Time [sec]
7/17/2015
21
Output [V]
1
6
Summary of Serial Implication Logic
•
SIMPL is simple!
•
Tunneling switches  state machines.
•
Linear array + demux; high density.
•
State encoded with impedance, not voltage.
•
No static power dissipation.
•
Nonvolatile.
•
Conditional copy with inversion is ‘implication’
•
Compiler construction completed.
•
nanoCircuits built and currently under test.
7/17/2015
22
7/17/2015
23