Transcript Slide 1

Wave-equation MVA
by inversion of differential
image perturbations
Paul Sava & Biondo Biondi
Stanford University
SEP
[email protected]
Motivation
[email protected]
Wave-equation MVA (WEMVA)
• Band-limited
• Multi-pathing
• Resolution
• Born approximation
– small anomaly
• Rytov approximation
– phase unwrapping
[email protected]
Wave-equation MVA (WEMVA)
• WE tomography
– data space
• WE MVA
– image space
[email protected]
Outline
1.
2.
3.
4.
WEMVA overview
Born image perturbation
Differential image perturbation
Example
[email protected]
A tomography problem
min Δ s Δ q  Ls
q
L
Traveltime
MVA
Wave-equation
tomography
Wave-equation
MVA
t
d
R
traveltime
data
image
ray field
wavefield
wavefield
[email protected]
WEMVA: main idea
Δ W  W  W0
s 0  Δs
s0
W0  U e
i s 0 
W  Ue
i s 0  i  s 
[email protected]
Born approximation

ΔW  W0 e
i Δs 

1
ΔW  W0 i Δs 
e
e
i
Δ R  Ls
 1  i
i
[email protected]
WEMVA: objective function
Linear
WEMVA
operator
slowness
perturbation
min Δ s Δ R  Ls
image
perturbation
(known)
slowness
perturbation
(unknown)
image
perturbation
[email protected]
WEMVA: objective function
min Δ s Δ R  Ls
Traveltime
MVA
Wave-equation
tomography
Wave-equation MVA
t
d
R
[email protected]
Fat ray: GOM example
[email protected]
Outline
1.
2.
3.
4.
WEMVA overview
Born image perturbation
Differential image perturbation
Example
[email protected]
“Data” estimate
min Δ s Δ R  Ls
Traveltime
MVA
Wave-equation
tomography
Wave-equation MVA
t
d
R
ray
tracing
data
modeling
residual
migration
[email protected]
Prestack Stolt residual migration
R  S r R0 
• Background image
• Velocity ratio
R0
r
r
R0
R
[email protected]
Prestack Stolt residual migration
R  R  R0
• Image perturbation
r
R0
R
[email protected]
Born approximation
[email protected]
Residual migration: the problem
Correct velocity
Incorrect velocity
Zero offset image
Zero offset image
Angle gathers
Angle gathers
[email protected]
Born approximation
[email protected]
Outline
1.
2.
3.
4.
WEMVA overview
Born image perturbation
Differential image perturbation
Example
[email protected]
Differential image perturbation
Image
difference
Image
differential
R  S r R0   R0
Rˆ 
dS r
dr
R0  r
r 1
Computed
Measured
[email protected]
Differential image perturbation
R
Rr
Rˆ 
dS r
dr
R0  r
R  S r R0   R0
r 1
R0
r
r0
r
[email protected]
Phase perturbation
f
3p
2p
p
0
r
p
2p
[email protected]
Differential image perturbation
[email protected]
Born approximation
[email protected]
Example: background image
Zero
offset
image
Background
image
Angle
gathers
[email protected]
Example: differential image
Zero
offset
image
Differential
image
Angle
gathers
[email protected]
Example: slowness inversion
Image
perturbation
Slowness
perturbation
[email protected]
Example: updated image
Updated
image
Updated
slowness
[email protected]
Example: correct image
Correct
image
Correct
slowness
[email protected]
Outline
1.
2.
3.
4.
WEMVA overview
Born image perturbation
Differential image perturbation
Example
[email protected]
Field data example
• North Sea
depth
– Salt environment
– Subset
location
– One non-linear iteration
•
•
•
•
•
Migration
Residual migration
Slowness inversion
Slowness update
Re-migration
(background image)
(image perturbation)
(slowness perturbation)
(updated slowness)
(updated image)
[email protected]
depth
depth
location
[email protected]
depth
velocity ratio
velocity ratio
[email protected]
depth
r 1
r 1
r 1
depth
location
[email protected]
depth
location
location
[email protected]
depth
location
location
[email protected]
depth
depth
location
[email protected]
depth
depth
location
[email protected]
Summary
• MVA
– Wavefield extrapolation methods
– Born linearization
– Differential image perturbations
• Key points
– Band-limited (sharp velocity contrasts)
– Multi-pathing (complicated wavefields)
– Resolution (frequency redundancy)
[email protected]
[email protected]
MVA information (a)
Traveltime MVA
•
Wave-equation MVA
•
Offset focusing (flat ADCIG)
Offset focusing (flat ADCIG)
g
x
g
x
z
z
[email protected]
MVA information (b)
Traveltime MVA
•
Wave-equation MVA
•
•
Offset focusing (flat ADCIG)
Offset focusing (flat ADCIG)
Spatial focusing
g
x
g
x
z
z
[email protected]
MVA information (c)
Traveltime MVA
•
Wave-equation MVA
•
•
•
Offset focusing (flat ADCIG)
Offset focusing (flat ADCIG)
Spatial focusing
Frequency redundancy
wlow

w
g
whigh
w
g
[email protected]
WEMVA cost reduction
• Full image
• Normal incidence image
– Offset focusing
– Spatial focusing
– Frequency
– Spatial focusing
– “fat” rays
wlow

w
g
whigh
w
g
[email protected]
Another example
[email protected]
Example: correct model
Zero
offset
image
Angle
gathers
[email protected]
Example: background model
Zero
offset
image
Angle
gathers
[email protected]
Example: correct perturbation
Zero
offset
image
Angle
gathers
[email protected]
Example: differential perturbation
Zero
offset
image
Angle
gathers
R 
dRr
dr
r
r 1
[email protected]
Example: perturbations comparison
Correct
Difference
Differential
[email protected]
Example: differential perturbation
Zero
offset
image
Angle
gathers
[email protected]
Example: difference perturbation
Zero
offset
image
Angle
gathers
[email protected]
Example: updated model
Zero
offset
image
Angle
gathers
[email protected]
Example: correct model
Zero
offset
image
Angle
gathers
[email protected]