Transcript Document
ˆ c =Y Y+c Y+ = (YTY)-1 YT Inversion is possible if: ? YTY is non-singular and squared (Full rank) rank(Y) = 2 =min(#r,#c) => Y is full rank Y’*Y is (33) but: rank(Y’*Y)=2 ! 1 Y should have: #rows > #col.s Column are linearly dependent 2 Y should not be: Rank deficient ! 3 compon.s, 4 samples 4 wavel.s, 4 samples rank(x)=min(r(c),r(s))=3 rank(x) < min(# r, #c) =4 => x is rank deficient pinv can be performed when x is rank deficient.. pinv ?X= I (not square and singular X) svd & estimation of X using significant factors ?U**V*T=I V**-1U*TU**V*T=I pseudo inverse U*TU*=I *-1*=I V*V*T=I ? pinv(X)= X+ = V**-1U*T X = C S classic Hard Model ks kC X ˆ = CC+X X 1. # samp.s ≥ # compon.s 2. C : full rank (rank(C)= #compon.s) (lin indep conc profiles) ˆ X ˆ -X|| || X Criterion for fitting ks Projection of X onto space of C C = X Z inverse Hard Model ks kC X ˆ = XX+C C ˆ C ! 1. # samp.s ≥ # wavel.s 2. X: full rank (rank(X)= # wavel.s) - variab. Select. - Factor based methods ˆ -C|| || C Criterion for fitting ! ks Projection of X onto space of C X is usually near to singular… # samples < # wavel.s # wavel.s > # compon.s XX+ =U**V*TV**-1U*T =U***-1U*T =TT+ (signif factors) C = T RZ inverse X Hard Model ks SVD T ˆ -C|| || C ˆ = TT+C Criterion C for fitting 1. # samp.s ≥ # PCs 2. T: full rank (lin indep col.s) ks kC ˆ C Projection of C onto space of T T = C R classic Hard Model ks kC X T SVD ˆ = CC+T T 1. # samp.s ≥ # compon.s 2. C : full rank (lin indep. conc prof.s) Tˆ ˆ -T|| || T Criterion for fitting k Projection of T onto space of C ˆ = XX+C C ccrX (classical curve resolution) ccrC ˆ = CC+T T pcrT ˆ = CC+X X ˆ = TT+C C pcrC (Target Transform) T J Thurston, R G Brereton Analyst 127, 2002, 659. The considered kinetic system: Second order consecutive A+B CD r(C)=3 1 # indep react.s +1 0.5 2 0 0 5 10 Time (min) 15 20 Spectral meas. In 101 wavel.s each 30 sec (41 times) Absorbance Concentration (microM) 1.5 1.5 1 0.5 0 20 10 Time (min) 420 0 440 460 480 500 Wavelength (nm) ccrC: ˆ C X(41x101) r(X)=3 41 samples 101 wavel.s =X*inv(X‘*X)*X'*C 1 X1=[X(:,50) X(:,70) X(:,90)] ˆ C =X1*inv(X1‘*X1)*X1'*C ˆ C =X*pinv(X)*C 1 # samp.s ≥ # wavel.s 2 rank(X)= # wavel.s Information content ! ccrX: C(41x4) r(X)=3 41 samples 4 compon.s ˆ =C*inv(C’*C)*C’*X X C1=C(:,2:4) ˆ =C1*inv(C1’*C1)*C1’*X X ˆ =C*pinv(C)*X X 1. # samp.s ≥ # compon.s 2. rank(C)= #compon.s pcrT: ˆ =C*inv(C’*C)*C’*T T C1=C(:,2:4) ˆ =C1*inv(C1’*C1)*C1’*T T ˆ =C*pinv(C)*T T pcrC: ˆ =T*T’*C C 1. # samp.s ≥ # PCs 2. rank(T)= # col.s (always it is so…) Overlap effect 1.5 Concentration (microM) 0.8 0.6 0.4 0.2 0 420 440 460 480 wavelength (nm) 500 1 0.5 0 0 5 10 Time (min) 15 20 2 Absorbance Absorbance 1 1.5 1 0.5 +Rand noise 0 20 10 Time (min) 420 0 440 460 480 500 Wavelength (nm) 0.11 ccrX noise 0.02 0.12 0.11 0.1 k2 k2 0.105 ccrC noise 0.02 0.1 0.09 0.095 0.08 0.09 0.36 0.38 0.11 0.4 k1 0.42 0.44 0.3 pcrT noise 0.02 0.4 k1 0.45 0.5 pcrC noise 0.02 0.12 0.105 0.11 0.1 k2 k2 0.35 0.1 0.09 0.095 0.08 0.09 0.36 0.38 0.4 k1 0.42 0.44 0.3 0.35 0.4 k1 0.45 0.5 Spectral overlap (in the presence of some noise) results in some deviation in the results from ***C methods Results from application of ***C and ***X methods are different … One way to obtain more similar results from ***C and ***X methods are application of constraints Presence of heteroscedastic noise 41 reaction times &101 wavelengths 1.5 1 0.5 0 0 40 50 Variable No. 20 100 0 reaction time 0.015 0.01 + a heterosced. noise Absorbance Absorbance 2 0.005 0 -0.005 -0.01 -0.015 0 20 40 60 Variable No. 80 100 0.106 0.104 k2 0.102 0.1 0.098 0.096 0.094 0.36 0.38 0.4 0.42 0.44 k1 Inaccurate results from ccrX ! weighted regression… ˆ -X)|| ||W ( X Absorbance 0.05 weights 0 -0.05 0 20 40 60 Variable No. 80 100 W= 1/SD1 1/SD2 … 1/SDn 0.1005 k2 n=50 0.1 0.0995 0.3995 0.4 k1 0.4005 Accurate results from weighted ccrX ! FSMWFA in daset 6 FSMWFA log (eigvalue) 2.5 0.5 -1.5 -3.5 -5.5 -7.5 300 320 340 360 380 400 420 440 460 480 500 wavelength Recognition of the presence of heterosc. noise Sampling error coefficient 1.01 A more serious source of error 1.005 1 0.995 0.99 0 1.015 10 20 30 Sample number 40 1.01 1.005 1 Non-random sampling error 0.995 0.99 0 5 0 10 10 20 30 40 50 Square, symmetric, But not diagonal W matrix: J Chemometr 2002, 16, 378. R. Bro, N.D. Sidiropoulos, A.K. Smilde Maximum likelihood fitting 0.105 0.105 0.1 0.1 0.095 0.095 0.09 0.09 k2 k2 Presence of non-random sampling error nS=0.005 0.085 0.08 0.3 0.08 ccrX 0.075 0.4 k1 0.5 0.085 0.075 0.6 ˆ -X|| || X J Chemom 2002, 16,387. R.Bro et al 0.3 0.4 k1 0.5 0.6 ˆ -X)|| ||W ( X Weighted regression Presence of unknown interference Changing interference, drift , or shift 1.5 1.4 concentration (microM) absorbance of pure components 1 0.8 0.6 0.4 0.2 0 400 concentration profiles 1 0.5 2.5 420 440 460 480 0 0 500 wavelength 2 (nm) Absorbance absorbance 1.2 Data 5 10 15 reaction time(min) 1.5 1 0.5 0 400 rank(Data)=4 420 440 460 Wavelength (nm) 480 500 20 0.103 0.103 ccrX k2 k2 0.102 0.102 0.101 0.1 0.101 0.099 0.1 0.099 0.385 0.098 0.39 0.395 0.4 0.405 0.097 0.39 ccrC 0.395 k1 0.4 0.405 k1 0.13 0.125 0.102 pcrC 0.101 0.115 k2 k2 0.12 pcrT 0.11 0.099 0.105 0.098 0.1 0.095 0.38 0.1 0.385 0.39 0.395 k1 0.4 0.405 0.097 0.39 0.395 0.4 k1 0.405 Presence of shift or drift (a changing interference) results in serious deviations in ***X Methods (but not in ***C methods) Why? In the presence of shift, drift or changing interferences: T or X space includes 1. the concentration changes according to the model 2. variations from shift, drift or changing interference C space includes only the concentration changes according to the model ˆ = CC+T T ˆ = CC+X X Projection of a larger space to a smaller one ˆ = TT+C C ˆ = XX+C C Projection of a smaller space to a larger one ˆ = TT+C C in the presence of unknown interference, drift or shift. Target Transform (pcrC) is the most preferred method Constant interference 1.5 1.4 concentration (microM) absorbance of pure components 1 0.8 0.6 2.5 0.4 0.2 0 400 2 420 Absorbance absorbance 1.2 440 460 480 concentration profiles A+B CD 1 0.5 Data 0 0 500 5 10 15 reaction time(min) wavelength (nm) 1.5 1 0.5 0 400 rank(Data)=3 ! 420 440 460 Wavelength (nm) 480 500 20 0.101 0.101 ccrX 0.1005 k2 k2 0.1005 0.1 0.1 0.0995 0.0995 0.099 0.399 ccrC 0.3995 0.4 0.4005 0.099 0.399 0.401 0.3995 0.101 pcrT 0.1005 k2 k2 0.401 0.4005 0.401 0.101 0.1 0.0995 0.099 0.399 0.4005 k1 k1 0.1005 0.4 pcrC 0.1 0.0995 0.3995 0.4 k1 0.4005 0.401 0.099 0.399 0.3995 0.4 k1 A constant interference does not show any significant effect the accuracy of ***X and ***C methods. Target test fitting From: J Chemometr. 2001, 15, 511. P.Jandanklang, M. Maeder, A. C. whitson Differential pulse Voltammetry 35 voltammograms Unitary current 30 25 20 Each voltammog. depends only on its own E1/2 15 10 5 0 -0.1 -0.05 0 E 0.05 0.1 Successive complexation: M L ML M 2L ML2 M 3L ML3 [ ML] ML [ M ][L] [ ML2 ] ML2 [ M ][L]2 [ ML3 ] ML3 [ M ][L]3 1 [ MLn ] [ ML] ,....., n [ M ][L] [ M ][L]n CTM [ M ] [ ML] .... [ MLn ] CTL [ L] [ ML] .... n[ MLn ] [L]n1 n [L]nn(CTM CTL) n1 [L]n1n1((n 1)CTM CTL) n2 .... CTL 0 [M ] 1 (1 1[ L] 2 [ L]2 .... n [ L]n ) [ MLn ] n [ L]n (1 1[ L] 2 [ L]2 .... n [ L]n ) Analyst , 2001 , 126 , 371-377 Each concn. profile includes 1,…, n 35 1 voltammograms Unitary current 0.8 0.6 0.4 0.2 0 0 25 20 15 10 5 20 40 60 0 -0.1 80 -0.05 0 E Ctotal L 35 X Data 30 25 current Current microA 30 20 15 10 5 0 -0.1 -0.05 0 E 0.05 0.1 0.05 0.1 X=CS X=UVT=TV ˆ s = VVT s voltammogr ˆ c = UUT c = TTT c concn. For estimation of concn. profiles 1,…,n (n parameters) should be optimized simultaneously 1,…,n are dependent parameters Simultaneous optimization of n dependent nonlinear parameters: • Simplex method. • Levenberg-Marquardt •… estimation of (E1/2)1, …, (E1/2 )n values for voltammograms (E1/2)1, …, (E1/2 )n are independent parameters 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 (E1/2)M -3 -0.1 -0.05 0 r = || ˆ s - s|| 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 (E1/2)ML (E1/2)M -3 -0.1 -0.05 0 r = || ˆ s - s|| 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 (E1/2)ML (E1/2)ML2 (E1/2)M -3 -0.1 -0.05 0 r = || ˆ s - s|| 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 (E1/2)ML3 (E1/2)ML (E1/2)ML2 (E1/2)M -3 -0.1 -0.05 0 r = || ˆ s - s|| 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 (E1/2)ML3 (E1/2)ML (E1/2)ML2 (E1/2)L (E1/2)M -3 -0.1 -0.05 0 r = || ˆ s - s|| 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 (E1/2)ML3 (E1/2)I (E1/2)ML (E1/2)ML2 (E1/2)L (E1/2)M -3 -0.1 -0.05 0 r = || ˆ s - s|| 0 E 0.05 0.1 35 voltammograms 25 20 15 10 5 0 -0.1 2 -0.05 0 0.05 0.1 E 1 log10(norm(r)) Unitary current 30 0 -1 -2 -3 -0.1 -0.05 0 E 0.05 0.1 Optimum values for n independent parameters can be estimated by grid search of one parameter. A difficult aspect of hard modeling is determination of correct model Thanks. Thanks to: Miss Maryam Khoshkam and Mr Yaser Beyad for a number of m-files and slides.