effects of thermal partons on J/psi
Download
Report
Transcript effects of thermal partons on J/psi
Perturbative QCD apporach to
Heavy quarkonium
at finite temperature and density
Su Houng Lee
Yonsei Univ., Korea
1. Introduction on sQGP and Bag model
2. Gluon condensates in sQGP and in vacuum
3. J/y suppression in RHIC
4. Pertubative QCD approach for heavy quarkonium
Thanks to :
Istanbul 06 S.H.Lee
Recent Collegues: C.M. Ko, W. Weise, B. Friman, T. Barnes, H. Kim, Y. Oh, ..
Students: Y. Sarac, Taesoo Song, Y. Park, Y. Kwon, Y. Heo,..
1
Quark Gluon Plasma (T.D. Lee and E. Shuryak)
Proton
At high T
Proton
and/or
Density
Proton
Nucleons in vacuum
Istanbul 06 S.H.Lee
Quark Gluon Plasma
2
QCD Phase Diagram at finite T and r
Lattice result:
sudden change in p and E
above Tc
Quark Gluon Plasma
(sQGP)
~ 170 MeV
Different
•
Particle spectrum
(mass)
•
Vacuum
•
Deconfinement
•
Theoretical
approach
0.17 / fm3
Istanbul 06 S.H.Lee
3
Relativistic Heavy Ion collision
Signal of QGP
Istanbul 06 S.H.Lee
4
Some highlights from RHIC
Data from STAR coll. At RHIC
Jet quenching: strongly interacting matter
V2: very low viscosity
Istanbul 06 S.H.Lee
5
sQGP strongly interacting and very small viscosity
Vacuum property of sQGP
MIT Bag model and Quark
Gluon Plasma (QGP)
Istanbul 06 S.H.Lee
6
Bag model and sQGP
MIT Bag model : inside the Bag fvac=0, perturbative vacuume
outside the Bag fvac = non zero , non perturbative vacuum
Sinside d 4 x{y iD
y B}
B
2.04
4 3
B
R
R
3
4 3
4B
R 4 BV
3
Enucleon N q
R 1 fm,
B (120 MeV)4
R 0.8 fm, B (206 MeV)4
Istanbul 06 S.H.Lee
R
Original bag model
Later models
Outside pressure is
balanced by confined
quark pressure
7
Bag model and sQGP
Phase transition in MIT Bag model
EQGP 3g
2
90
Outside pressure is
balanced by thermal
quark gluon pressure
B
T 4 .. B
PQGP g
2
90
T 4 .. B
4B
B
TC
Istanbul 06 S.H.Lee
T
EQGP , PQGP need large corrections but
EQGP 3PQGP 4 B
Asakawa, Hatsuda PRD 97
8
QCD vacuum vs. sQGP
Nonperturbative QCD vacuum
B
sQGP
MIT Bag
Vacuum with negative pressure
1. What is B in terms of QCD variables (operators)
2. Can understand soft modes associated with phase transition
Istanbul 06 S.H.Lee
9
Gluon condsenates in QGP
and Vacuum
Istanbul 06 S.H.Lee
10
Gluon condensate
1.
2
G 2 ( B 2 E 2 ) 1500MeV/fm3 , dominated by non-perturbative contribution
2.
RG invariant, gauge invariant, characteristic vacuum property, couples to spin 0 field
3.
Can be calculated on the lattice (DiGiacomo et al. )
4.
Related to trace of energy momentum tensor through trace anomaly (Hatsuda 87)
2
9 2
D T ml q q mh h h
G
G
4
8
5.
Nucleon expectation value is
6.
From
p | T | p m 0p
9
p G2 p
8
mq p | u u d d | p mq ( Bu Bd ) 45 MeV
m p m0p mu Bu md Bd ms Bs
we find
m0p 650MeV
m m0p mu Bu md Bs ms Bd
m m0p mu Bd md Bs ms Bu
Istanbul 06 S.H.Lee
11
Gluon condensate in MIT Bag model
Using
2
8
G T
9
Inside nucleon
2
G
2
G
Inside
Inside
2
G
outside
p
2
8
8
G p / V (m 0p / V ) 4 B
9
9
1500MeV/fm3 578 MeV / V
for
m 0p 650 MeV
Inside QGP
2
G
2
G
QGP
QGP
2
G
0
9
3 p 8 4 B
8
9
1500MeV/fm3 711MeV/fm3
Explicit lattice calculation of nonperturbative gluon condensate?
Istanbul 06 S.H.Lee
2
G
2
G
for B (200 MeV)4
0
QGP
(Digiacomo84)
(SHLee 89)
12
Gluon condensate in QGP from lattice calculation
2
G
non perturbati ve
2
G
lattice
2
G
lattice perturbati on
value a 4 lattice signal (cg 2 dg 4 .....)
Istanbul 06 S.H.Lee
13
Lattice data show
1.
Gluon condensate at T=0 is consistent with QCD sum rule value
2.
Gluon condensate at T>Tc is 50 to 70 % of its vacuum value
consistent with estimates of gluon condensate inside the Bag (nucleon)
3.
The change occurs at the phase transition point
T D Lee’s spin 0 field seems dominantly gluon condensate
and their expectation value indeed changes similarly in Bag and QGP
Istanbul 06 S.H.Lee
14
QCD vacuum vs. sQGP
Nonperturbative QCD vacuum
fVac
2
G
70%
2
G
30%
2
G 0
B
sQGP
MIT Bag
Vacuum with negative pressure
fVac
2
G
0.7
70%
2
G
If phase transition occurs, there will be enhancement of massless
glueball excitation
Istanbul 06 S.H.Lee
15
Summary I
1. Vacuum expectation value of Gluon condensate inside the
Bag and QGP seems similar. sQGP is a large Bag
What will the viscosity be ?? What is the property of sQGP?
Physical consequence of phase transition?
2. Future GSI (FAIR) will be able to prove vacuum change
through charmonium spectrum in nuclear matter
Istanbul 06 S.H.Lee
16
J/y in QGP
Istanbul 06 S.H.Lee
17
J/y in Quark Gluon Plasma
Heavy quark potential on the lattice
T 0
V (r )
r
Karsch et al. (2000)
c
Higher T
c
c
c
J/y melt above Tc
r
Istanbul 06 S.H.Lee
18
J/y suppression in Heavy Ion collision
1986: Matsui and Satz claimed J/y suppression is a signature of
formation of Quark Gluon Plasma in Heavy Ion collision
e
e
J /y
New RHIC data
Istanbul 06 S.H.Lee
19
J/y in Quark Gluon Plasma
2003: Asakawa and Hatsuda claimed J/y will survive up to 1.6 Tc
Quenched lattice calculation by Asakawa and Hatsuda using MEM
T< 1.6 Tc
T> 1.6 Tc
J/y peak at 3.1 GeV
Istanbul 06 S.H.Lee
20
Theoretical interpretations
1. C. H. Lee, G. Brown, M. Rho… : Deeply bound states
2.
C. Y. Wong… : Deby screened potential
1. Strong s at Tc < T < ~2 Tc
2. J/y form Coulomb bound states at Tc < T < ~2 Tc
Istanbul 06 S.H.Lee
21
Relevant questions in J/y suppression
Became a question of quntative analysis
a) What are the effects of Dynamical quarks ?
b) What is the survial probability of J/y in QGP
need to know J/y – gluon dissociation
need to know J/y – quark dissociation
Istanbul 06 S.H.Lee
22
Progress in QCD calculations
LO and NLO
Istanbul 06 S.H.Lee
23
Basics in Heavy Quark system
1. Heavy quark propagation
q
SG (q) S (q) S (q)G
S (q) ........... where,
S (q)
1
q m
Perturbative treatment are possible
because
Istanbul 06 S.H.Lee
m q QCD even for q 0
24
2. System with two heavy quarks
q
2
1
(q) ... dx
0
4m
F (q 2 , x)
2
q 2 ( x 1 / 2) 2 q 2
n
G
..
n
Perturbative treatment are possible when
4m q
2
Istanbul 06 S.H.Lee
2
2
QCD
25
Perturbative treatment are possible when
q2
0
-Q2
<0
m2J/ y > 0
Istanbul 06 S.H.Lee
4m2 q2 2QCD
expansion
parameter
process
2QCD
Photo production of open
charm
4m
2
QCD
2
QCD sum rules for heavy
quarks
Dissociation cross section
of bound states
2
4m Q 2
2
2QCD
QCD
2
24
mm2mJ m
/y J /y 0
26
Historical perspective on
Quarkonium Haron interaction in QCD
1. Peskin (79), Bhanot and Peskin (79)
a) From OPE
gluon
J /y
b) Binding energy= 0 >>
2. Kharzeev and Satz (94,96) , Arleo et.al.(02,04)
a) Rederive, target mass correction
b) Application to J/y physics in HIC
Istanbul 06 S.H.Lee
27
Rederivation of Peskin formula
using Bethe-Salpeter equation (Lee,Oh 02)
Resum Bound state by
Bethe-Salpeter Equation
d 4K
p1 , p2 ) ig CF
i( K p1 p2 ) ( K p1 p2 , K ) i( K ) V ( K p2 )
4
(2 )
2
Istanbul 06 S.H.Lee
28
NR Power counting in Heavy bound state
1. Perturbative part
0 mN c g 2 / 16 O(m g4 )
2
|k |
O(m g2 )
4
2 3
m
g
(
m
g
)
2
g
(m g4 )(m g4 )(m g2 ) 2
O(1)
2. External interaction: OPE
2
2
|p | |p |
0
mJ /y k1 2m 1 2
2m
2m
0
k1 | k1 | O(m g4 )
Istanbul 06 S.H.Lee
29
LO Amplitude
suppressedby
M
2
Istanbul 06 S.H.Lee
4 g 2 m2 M f k02
3N c
y ( p)
1
Nc
2
30
had ( ) dx g ( x ) g ( x)
However, near threshold, LO result is expected to have large correction
J /y
D
N
J /y
N
J /y
D
C
2
D
C
Istanbul 06 S.H.Lee
Exp data
1
3
C
C
N
mb
s1/2 (GeV)
C
31
NLO Amplitude
LO
:
(2m 0 ) g (k ) c ( p1 ) c( p2 )
0 , k O(m g4 ),
NLO :
p1 , p2 O(m g2 )
(2m 0 ) q(k1 ) c ( p1 ) c( p2 ) q(k 2 )
(2m 0 ) g (k1 ) c ( p1 ) c( p2 ) g (k 2 )
0 , k1 , k 2 O(m g4 ),
Istanbul 06 S.H.Lee
p1 , p2 O(m g2 )
32
NLO Amplitude : q c c q
q1
Collinear divergence when q1=0.
Cured by mass factroization
Istanbul 06 S.H.Lee
33
Mass factorization
q1
Gluons whose kcos q1 < Q scale,
should be included in parton
distribution function
q1
1
2
ˆ
d
d
dx
Q 2 2 dˆ LO i
2
2
NLO i
NLO i
s
sˆ'
s
s
Pji ( x)
E ln
2
dt1du1
dt1du1 2 0 x
4
dt1du1
D4
Integration of transverse momentum from zero to scale Q
Istanbul 06 S.H.Lee
34
NLO Amplitude : g c c g
Higher order
in g counting
Istanbul 06 S.H.Lee
35
NLO Amplitude : g c c g - cont
Previous diagrams can be reproduced with effective four point vertex
Istanbul 06 S.H.Lee
36
Cancellation of infrared divergence
Remaining Infrared Divergence cancells after adding one loop corrections
Istanbul 06 S.H.Lee
37
Application to Upsilon dissociation cross section
m (1S ) , m ( 2S )
Fit quark mass and coupling from fitting
to coulomb bound state gives
0 1
GeV
mb 5.1 GeV
0.5
q QQ q
Istanbul 06 S.H.Lee
g QQ g
38
Total cross section for Upsilon by nucleon: NLO vs LO
NLO/LO
Large higher order corrections
Even larger correction for charmonium
Istanbul 06 S.H.Lee
39
What do we learn from NLO calculation ?
1.
Large NLO correction near threshold, due to log terms
2k 2 , 0
log
0
where
0 700 MeV for J/y
Thermal quark and gluon masses of 300 MeV will
Reduce the large correction
2.
Dissociation by quarks are less than 10% of that by gluons
q QQ q
g QQ g
Quenched lattice results at finite temperature are reliable
Istanbul 06 S.H.Lee
40
Total cross section: gluon vs quark effects
With thermal mq = mg = 200 MeV
Istanbul 06 S.H.Lee
41
Effective Thermal cross section: gluon vs quark effects
p 2 dp
( p) e p / T 1
p 2 dp
e p /T 1
Istanbul 06 S.H.Lee
42
Effective Thermal width: gluon vs quark effects
p 2 dp
ng deg ( p) p / T
e 1
Istanbul 06 S.H.Lee
43
Summary II
1.
We reported on the QCD NLO Quarkonium-hadron
dissociation cross section.
Large correction even for upsilon system, especially near
threshold
2.
The corrections becomes smaller with thermal quark and
gluon mass of larger than 200 MeV
Obtained realistic J/y dissociation cross section by thermal
quark and gluons
3.
The dissociation cross section due to quarks are less than
10 % of that due to the gluons.
The quenched lattice calculation of the mass and width of J/y
at finite temperature should be reliable.
Istanbul 06 S.H.Lee
44
Reference for part I
Gluon condensates
•
A. Di Giacomo and G. C. Rossi, PLB 100(1981) 481; PLB 1008 (1982) 327.
•
Su Houng Lee, PRD 40 (1989) 2484.
Charmonium in nuclear matter
3.
F. Klingl, S. Kim, S.H.Lee, P. Morath, W. Weise, PRL 82 (1999) 3396.
4.
S.Kim and S.H.Lee, NPA 679 (2001) 517.
5.
S.H.Lee and C.M. Ko, PRC 67 (2003) 038202.
6.
S.J.Brodsky et al. PRL 64 (1990) 1011
Quarkonium hadron interaction
7.
M.E. Peskin, NPB 156 (1979) 365; G.Bhanot and M. E. Peskin, NPB156 (1979) 391
8.
Y.Oh, S.Kim and S.H.Lee, PRC 65 (2002) 067901.
Additional
9.
T.D. Lee, hep-ph/06 05017
Istanbul 06 S.H.Lee
45