Transcript Document

TITLE
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
LARGE AREA DEVICES:
SPARK COUNTERS
PARALLEL PLATE COUNTERS
RESISTIVE PLATE CHAMBERS
HIGH ACCURACY TRACKERS:
GAS MICROSTRIP CHAMBERS
MICROPATTERN DETECTORS
GAS ELECTRON MULTIPLIER
1
PESTOV COUNTERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
SPARK (PESTOV) COUNTERS
GOOD TIME RESOLUTION ---> THN GAP
GOOD EFFICIENCY---> THICK GAS LAYER
THIN GAP (100 µm) AND HIGH PRESSURES (~10 bar)
HIGH RESISTIVITY ELECTRODE
(PESTOV GLASS, 109 Ω cm
DESIGNER’S GAS MIXTURE FOR WIDE
SPECTRUM PHOTON ABSORPTION:
Yu. Pestov
Nucl. Instr. and Meth. 196(1982)45
HIGH-PRESSURE GAS VESSEL
METAL CATHODE
C3H
6
SEMI-CONDUCTING GLASS ANODE
SIGNAL PICK-UP STRIPS
Yu. Pestov et al, Nucl. Instr. and Meth. A456(2000)11
H. R. Schmidt, Nucl. Phys. B (Proc. Suppl.) 78 (1999) 372
2
PESTOV COUNTERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
SPARK COUNTER PERFORMANCES
100 µm GAP 12 BAR PRESSURE
EFFICIENCY
TIME RESOLUTION
HV (kV)
E. Badura et al, Nucl. Instr. and Meth. A379(1996)468
PHYSICAL ORIGIN OF TAILS IN THE TIME RESPONSE OF SPARK COUNTERS:
A. Mangiarotti and A. Gobbi, Nucl. Instr. and Meth. A482(2002)192
3
PESTOV COUNTERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
ALICE TIME-OF-FLIGHT PROTOTYPE
SINGLE LONG COUNTER IN CYLINDRICAL VESSEL
4
PESTOV COUNTERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
PHOTON-MEDIATED AVALANCHE SPREAD (DE-LOCALIZATION)
CHARGE SPECTRA BEFORE
AND
AFTER IRRADIATION:
COUNTER FORMATION:
LONG-TERM EXPOSURE TO STRONG RADIATION
POLYMER COATING ON ELECTRODES
INCREASES THE WORK FUNCTION
CHARGE
CAN THIS BE UNDERSTOOD AND
EXPLOITED FOR OTHER DETECTORS?
5
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RESISTIVE PLATE COUNTERS (RPC)
R. Santonico and R. Cardarelli, Nucl. Instr. and Meth. 187(1981)377
R. Santonico and R. Cardarelli, Nucl. Instr. and Meth. A263(1988)20
READOUT STRIPS X
HV
INSULATOR
GRAPHITE COATING
HIGH RESISTIVITY ELECTRODE (BAKELITE)
GAS GAP
GND
READOUT STRIPS Y
Initial condition after
applying high voltage
Surface charging of
electrodes by current flow
through resistive plates
After a discharge elctrons are
deposited on anode and
positive ions on cathode
I. Crotty et al, Nucl. Instr. and Meth. A337(1994)370
6
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RESISTIVE PLATE CHAMBERS SYSTEMS
BABAR IFR (SLAC)
C. Lu, RPC Workshop, Coimbra 2001
7
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RPC MUON DETECTOR FOR CMS (CERN LHC):
R (cm)
700
600
BARREL RPCs
~ 400 m2
500
400
300
200
100
200
400
600
800
1000
1200
Z (cm)
FORWARD RPCs
8
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
TRANSITION AVALANCHE TO STREAMER
NORMAL AVALANCHE
PHOTON MEDIATED BACKWARD PROPAGATION:
STREAMER
10 mV
80 mV
200 mV
R. Cardarelli, V. Makeev, R. Santonico, Nucl. Instr. and Meth. A382(1996)470
9
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RPC RATE CAPABILITY: AVALANCHE VS STREAMER OPERATION
STREAMER MODE:
AVALANCHE MODE:
3.5 109 Ω cm
r = 3 1011 Ω cm
R. Arnaldi et al, Nucl. Physics B (Suppl) 78 (1999) 84
10
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RPC RATE CAPABILITY: DEPENDS ON GAIN AND ELECTRODES RESISTIVITY
MATERIAL
VOLUME RESISTIVITY (Ω.cm)
Pestov glass
109-1010
Phenolic (Bakelite)
1010-1011
Cellulose
5.1012
Borosilicate glass
1013
Melamine
2.1013
PROPORTIONAL (AVALANCHE) OPERATION:
P. Fonte, Scientifica Acta XIII N2(1997)11
11
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GAP DEPENDENCE
THE SEPARATION AVALANCHE-STREAMER DEPENDS ON THE GAP:
3 mm
SMALL ADDITIONS OF ELECTRO-NEGATIVE
GASES EXTEND THE SEPARATION:
2 mm
R. Santonico, Scient. Acta XII N2(1997)1
P. Camarri et al, Nucl. Instr. and Meth. A414(1998)317
12
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RPC: INDUCED CHARGE DISTRIBUTION
2 mm gap
STREAMER MODE
V. Barret (ALICE di-muon trigger RPC) RPC Workshop, Coimbra 2001
13
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RPC: INDUCED SIGNAL CLUSTER SIZE
EFFECT OF ELECTRODE SURFACE RESISTIVITY
Y. Hoshi et al, RPC Workshop, Coimbra 2001
SIGNAL PROPAGATION IN RESISTIVE PLATE CHAMBERS:
W. Riegler and D. Burgarth, Nucl. Instr. and Meth. A481(2002)130
14
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
IMPROVING THE ELECTRODE SURFACE: LINSEED OIL TREAT THREAT
COATING THE BAKELITE PLATES WITH A THIN LAYER OF LINSEED OILCONSIDERABLY
IMPROVES PERFORMANCES (SMOOTHING OF LOCAL DEFECTS?)
R. Santonico and R. Cardarelli, Nucl. Instr. and Meth. 187(1981)377
SINGLE RATES vs HV:
AVERAGE CURRENT vs HV:
NON-OILED
NON-OILED
AFTER OIL TREATMENT
AFTER OIL TREATMENT
M. Abbrescia et al, Nucl. Instr. and Meth. A394(1997)13
15
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
BABAR RPCS: FAST EFFICIENCY DROP
PROBLEM OF QUALITY CONTRON IN LINSEED
OIL COATING AND POLYMERIZATION
DROPLETS, STALAGMITES, PILLARS, FRAMES
C. Lu, RPC Workshop, Coimbra 2001
16
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
OPTIMIZATION OF RPC PARAMETERS
INCREASING THE GAP PROVIDES BETTER EFFICIENCY PLATEAUX (BUT WORSE TIME RESOLUTION)
RPC SIMULATION STUDIES:
M. Abbrescia et al, Nucl. Instr. and Meth. A409(1998)1
17
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MULTIPLE GAP RPC:
BETTER EFFICIENCY AND TIME RESOLUTION
HV
GND
DOUBLE GAP
FWHM=1.7 ns
SINGLE GAP
FWHM 2.3 ns
M. Abbrescia et al, Nucl. Instr. and Meth. A431(1999)413
18
RESISTIVE PLATE CHAMBERS
IONIZATION
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MULTI-GAP RESISTIVE PLATE CHAMBERS
WIRED “OR” BETWEEN SEVERAL GAPS
s ~ 68 ps
P. Fonte et al, Nucl. Instr. and Meth. A449 (2000) 295
19
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MULTIGAP RPC
SEVERAL RESISTIVE ELECTRODE PLATES WITH NARROW GAPS
ALL INTERNAL PLATES ARE FLOATING (SET AT PROPER VOLTAGE BY ELECTROSTATICS)
E. Cerron Zeballos et al, Nucl. Instr. and Meth. A 374(1996)132
HV
FLOATING
GND
A. Akindinov et al,
Nucl. Instr. and Meth. A456(2000)16
20
RESISTIVE PLATE CHAMBERS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
RPCs: OPEN PROBLEMS
QUALITY CONTROL (LINSEED COATING)
CHANGE OF RESISTIVITY WITH TIME (WATER DRYING?)
TEMPERATURE DEPENDENCE OF RESISTIVITY
RADIATION DAMAGE OF BAKELITE
RADIATION-INDUCED GAS POLYMERIZATION
GENERAL QUESTION: HOW TO MONITOR RESISTIVITY AND PERFORMANCE CHANGES?
21
MSGC
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MICRO-STRIP GAS CHAMBER (MSGC)
Drift electrode
THIN ANODE AND CATHODE STRIPS ON AN
INSULATING SUPPORT
Anode strip
200 µm
Glass support
Back plane
Cathode strips
A. Oed
Nucl. Instr. and Meth. A263 (1988) 351.
22
MSGC
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MSGC: SIGNAL FORMATION
3-D READOUT (ANODE3, CATHODES, BACKPLANE)
LIGHT CONSTRUCTION:
23
MSGC
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MSGC PERFORMANCES
EXCELLENT RATE CAPABILITY AND MULTI-TRACK RESOLUTION
10
MSGC Beam Event BW
5
0
5
10
106/mm2
RATE CAPABILITY >
s
SPACE ACCURACY ~ 40 µm rms
2-TRACK RESOLUTION ~ 400 µm
fwhm~350
µm
15
20
25
30 0
10
20
30
40
50
60
Strip number (200 µm pitch)
24
MSGC SYSTEMS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MSGC SYSTEMS:
NEUTRON SPECTROMETER AT ILL-GRENOBLE
Ring of 50 MSGCs operated in 3He-CF4 (3.1 bar-0.8 bar)
25
MSGC SYSTEMS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
CMS MSGC TRACKER (CERN LHC)
BARREL
~5500 modules
FORWARD
~ 5000 modules
CANCELLED (IN FAVOUR OF SILICON)
26
MSGC DISCHARGES
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MSGC: DISCHARGE PROBLEMS
For detection of minimum ionizing tracks a gain ~ 3000 is needed
In presence of heavily ionizing particles background, the discharge probability is large
ON EXPOSURE
TO a PARTICLES
27
MSGC DISCHARGES
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MSGC DISCHARGE PROBLEMS:
FULL BREAKDOWN
MICRODISCHARGES
28
MSGC DISCHARGES
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MSGC: DISCHARGE MECHANISMS
FIELD EMISSION FROM CATHODE EDGE
VERY HIGH IONIZATION RELEASE:
AVALANCHE SIZE EXCEEDS RAETHER’S LIMIT
Q ~ 107
CHARGE PRE-AMPLIFICATION FOR IONIZATION
RELEASED IN HIGH FIELD CLOSE TO CATHODE
29
NEW MICROPATTERN
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
NEW MICRO-PATTERN DETECTORS
MICRO-GAP CHAMBER
MICRO-GROOVE CHAMBER
R. Bellazzini et al
Nucl. Instr. and Meth. A335(1993)69
R. Bellazzini et al
Nucl. Instr. and Meth. A424(1999)444
30
NEW MICROPATTERN
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
NEW MICRO-PATTERN DETECTORS
MICROMEGAS:
COMPTEUR A TROUS (CAT)
Thin-gap parallel plate chamber
Y. Giomataris et al
Nucl. Instr. and Meth. A376(1996)29
Single hole proportional counter
F. Bartol et al, J. Phys.III France 6 (1996)337
31
NEW MICROPATTERN
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MICRO-PATTERN PIXEL DETECTORS
MICRODOT:
MICRO-PIN ARRAY (MIPA):
Metal electrodes on silicon
S. Biagi et al
Nucl. Instr. and Meth. A361(1995)72
REVIEW:
Matrix of individual needle proportional counters
P. Rehak et al, IEEE Trans. Nucl. Sci. NS-47(2000)1426
F. Sauli and A. Sharma: Micropattern Gaseous Detectors, Ann. Rev. Nucl. Part. Sci. 49(1999)341
32
NEW MICROPATTERN
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
DISCHARGE POINT IN MICROPATTERN DETECTORS
ALMOST THE SAME IN ALL TESTED DEVICES: LAW OF NATURE!
A. Bressan et al
Nucl. Instr. and Meth. A424(1999)321
33
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GAS ELECTRON MULTIPLIER (GEM)
Thin, metal-coated polymer foil with high
density of holes:
100÷200 µm
Typical geometry:
5 µm Cu on 50 µm Kapton
70 µm holes at 140 mm pitch
F. Sauli,
Nucl. Instrum. Methods A386(1997)531
34
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM DETECTOR:
- multiplication and readout on separate electrodes
- electron charge collected on strips or pads: 2-D readout
- fast signal (no ion tail)
- global signal detected on the lower GEM electrode (trigger)
Cartesian
Small angle
Pads
A. Bressan et al, Nucl. Instr. and Meth. A425(1999)254
35
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
MULTIPLE GEM STRUCTURES
Cascaded GEMs permit to attain much larger gains
before discharge
Double GEM
Triple GEM
C. Buttner et al, Nucl. Instr. and Meth. A 409(1998)79
S. Bachmann et al, Nucl. Instr. and Meth. A 443(1999)464
36
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
SINGLE-DOUBLE-TRIPLE GEM
GAIN
Multiple structures provide equal gain
at lower voltage
The discharge probability on exposure
to a particles is strongly reduced
DISCHARGE PROBABILITY WITH
a
:
For a gain of 8000 (required for full
efficiency on minimum ionizing
tracks) in the TGEM the discharge
probability is not measurable.
S. Bachmann et al,
Nucl. Instr. and Meth. A479 (2002) 294
37
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
FAST ELECTRON SIGNAL (NO ION TAIL)
The total length of the detected signal corresponds to
the electron drift time in the induction gap:
Full Width 20 ns
(for 2 mm gap)
Induced charge profile on
strips
FWHM 600 µm
Good multi-track resolution
38
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
COMPASS TRIPLE GEM CHAMBERS
• Active Area 30.7 x 30.7 cm2
• 2-Dimensional Read-out with
2 x 768 Strips @ 400 µm pitch
• 12+1 sectors GEM foils
(to reduce discharge energy)
• Central Beam Killer 5 cm Ø
(remotely controlled)
• Total Thickness: 15 mm
• Low mass honeycomb support plates
B. Ketzer et al, IEEE Trans. Nucl. Sci. NS-48(2001)1065
C. Altumbas et al, Nucl. Instrum. Methods A490(2002)177
39
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
2-DIMENSIONAL READOUT STRIPS
Two orthogonal sets of parallel
strips at 400 µm pitch
engraved on 50 µm Kapton
80 µm wide on upper side,
350 µm wide on lower side
(for equal charge sharing)
400 µm
80 µm
350 µm
400 µm
40
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
20 TRIPLE GEM DETECTORS BUILT FOR COMPASS AT CERN (2001-2002)
BEAM: 107 Particles/second ~ 10 Tracks/event
50 µm accuracy 10 ns Time resolution
41
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
DETECTED CHARGE FOR
MINIMUM IONIZING TRACKS
Gain ~ 8000
Y-coordinate
X-coordinate
42
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
CLUSTER CHARGE CORRELATION
Very good correlation, used
for multi-track ambiguity
resolution
s ~ 10%
X-Y Cluster charge correlation:
43
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
SPACE AND TIME RESOLUTION
Time resolution:
Space resolution:
s = 12.4 ns
s = 57 µm
Time resolution: computed from
charge signals in three consecutive
samples (at 25 ns intervals)
s = 12.4 ns
Traks fit with two TGEM and one silicon micro-strip
After deconvolution s = 46±3 µm
44
GEM
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM TIME RESOLUTION
Triple GEM with pad readout for LHCb muon
detector
G. Bencivenni et al, Nucl. Instr. and Meth. A478(2002)245
45
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM APPLICATIONS
FAST X-RAY IMAGING
Using the lower GEM signal, the readout can be
self-triggered with energy discrimination:
A. Bressan et al,
Nucl. Instr. and Meth. A 425(1999)254
F. Sauli, Nucl. Instr. and Meth.A 461(2001)47
9 keV absorption radiography of a small mammal
(image size ~ 60 x 30 mm2)
46
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM: HIGH PRESSURE OPERATION
Neutron detection in He3?
A. Bondar, A. Buzulutskov, L. Shekhtman, V. Snopkov and A. Vasiljev,
Subm. Nucl. Instr. and Meth. (2002)
47
GEM APPLICATIONS
X-RAY POLARIMETER
Charge asymmetry:
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM chamber with pad readout to detect the direction
of the photoelectron produced by X-rays
5.9 KeV unpolarized source
5.4 KeV polarized source
E. Costa et al,
Nature 411(2001)662
R. Bellazzini et al
Nucl. Instr. and Meth.
A478(2002)13
48
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
PHOTON DETECTION WITH MULTI-GEM
Multiple GEM detectors permit to achieve very large gains (106) in photocathode-friendly pure
noble gases or poorly quenched mixtures.
Reduced transparency strongly suppresses photon and ion feedback
A. Buzulutskov et al, Nucl. Instrum.
Methods A443(2000)164
Large area position-sensitive photomultipliers
R. Chechik et al, Nucl. Instr. and Meth. A 419(1998)423
49
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM OPERATION IN CF4
Photoelectron extraction from CsI:
A. Breskin, A. Buzulutskov, R. Chechik
Nucl. Instr. and Meth. A 483(2002)658
50
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
SEALED GEM PHOTOMULTIPLIER
Semi-transparent CsI photocathode
Single photo-electron signals:
A. Breskin et al,
Nucl. Instr. and Meth. A478(2002)225
51
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
GEM OPTICAL IMAGER
Scintillation light in a multiple GEM detector recorded
by a CCD camera
QuickTime™ and a
Video decompressor
are needed to see this picture.
- particle tracks
Proton and Triton tracks
by neutrons in 3He
F.A.F. Fraga et al,
Nucl. Instr. and Meth. A478 (2002) 357
52
GEM APPLICATIONS
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
TIME-RESOLVED PLASMA DIAGNOSTIC
PINHOLE GEM CAMERA WITH PIXEL
READOUT:
Plasma emission (~ 1.5 keV) sampled at 10 kHz
QuickTime™ and a
Video decompressor
are needed to see this picture.
FIRST OBSERVATION OF PLASMA ROTATION BEFORE DUMP!
Courtesy D. Pacella, Princeton Plasma Physics Laboratory
D. Pacella et al, Rev. Scient. Instrum. 72 (2001) 1372
R. Bellazzini et al, Nucl. Instr. and Meth. A478(2002)13
53
BIBLIOGRAPHY
F. Sauli-Short Courses-IEEE-NSS 2002-PART 2
BASIC BIBLIOGRAPHY
IONIZATION CHAMBERS AND COUNTERS, D.H. Wilkinson (Cambridge Univ, Press, 1950)
ELECTRON AND NUCLEAR COUNTERS, S.A. Korff (Van Nostrand, New York 1955)
BASIC DATA ON PLASMA PHYSICS, S.C. Brown (Wiley, New York 1959)
ELECTRON AVALANCHES AND BREAKDOWN IN GASES, H. Raether (Butterworth, London 1964)
COLLISION PHENOMENA IN IONIZED GASES, E.W. McDaniel (Wiley, New York 1964)
ATOMIC AND MOLECULAR RADIATION PHYSICS, L.G. Christophorou (Wiley, New York 1971)
SPARK, STREAMER, PROPORTIONAL AND DRIFT CHAMBERS, P. Rice-Evans (Richelieu, London 1974)
PRINCIPLES OF OPERATION OF MULTIWIRE PROPORTIONAL AND DRIFT CHAMBERS, F. Sauli (CERN 77-09, 1977)
TECHNIQUES AND CONCEPTS OF HIGH-ENERGY PHYSICS, ed. by Th. Ferbel (Plenum, New York 1983)
TECHNIQUES FOR NUCLEAR AND PARTICLE PHYSICS EXPERIMENTS, W.R. Leo (Springer-Verlag, Berlin 1987)
RADIATION DETECTION AND MEASUREMENTS, G.F. Knoll (Wiley, New York 1999)
RADIATION DETECTORS, C.F.G. Delaney and E.C. Finch (Clarendon Press, Oxford 1992)
SINGLE PARTICLE DETECTION AND MEASUREMENT, R. Gilmore (Taylor and Francis, London 1992)
INSTRUMENTATION IN HIGH ENERGY PHYSICS, ed. by F. Sauli (World Scientific, Singapore 1992)
PARTICLE DETECTION WITH DRIFT CHAMBERS, W. Blum and l. Rolandi (Springer-Verlag, Berlin 1993)
PARTICLE DETECTORS, K. Grupen (Cambridge Monographs on Part. Phys. 1996)
REVIEW ARTICLES
G. Charpak and F. Sauli: High-resolution electronic particle detectors, Ann. Rev. Nucl. Part. Sci. 34(1984)28
J. Va’vra: Wire chambers aging, Nucl. Instr. and Meth. A323(1992)34
F. Sauli and A. Sharma: Micropattern Gaseous Detectors, Ann. Rev. Nucl. Part. Sci. 49(1999)341
GAS DETECTORS DEVELOPMENT WEB PAGES:
http://www.cern.ch/GDD
MSGC, GEM
Bibliography
Papers
54