Transcript Document
NEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO collaboration: IReS, Strasbourg, France; LAL, Orsay, France; INEEL, Idaho Falls, USA; ITEP, Moscow, Russia; CENBG, BordeauxGradignan; JINR, Dubna, Russia; IEAP, Prague, Czech Republic; UCL, London, UK; LPC, Caen, France; Saga Universityt, Japan; LSCE, Gif-surYvette, France; Jyvaskyla University, Finland; MHC, South Hadley, USA; Charles University, Prague, Czech Republic; Manchester University, UK. SuperNEMO collaboration: CENBG Bordeaux-Gradignan; IReS, Strasbourg, France; LAL, Orsay, France; LPC, Caen, France; LSCE GifSur-Yvette, France; Jyvaskula Uiversity, Finland; Saga University, Japan; Osaka University, Japan; Fes University, Marocco; INR RAS, Moscow, Russia; ITEP, Moscow, Russia; JINR, Dubna, Russia; RRC Kurchatov Institute, Moscow, Russia; Charles University, Prague, Czech Republic; Technical University, Prague, Czech Republic; Manchester University, UK; UCL, London, UK; ISMA, Kharkov, Ukraine; INEEL Idaho Falls, USA; Mount Holyoke College, USA; University of Texas, USA; IFIC, Valencia, Spain; Canfranc laboratory, Zaragosa, Spain; NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Neutrinoless bb decay Experimental signature: a) 2 electrons b) Eb1+ Eb2=Qbb NEMO 3. Tracking experiment a) and b). Better signature, control and suppression of background. But worse resolution. Ultimate background – 2b2n decay tail. NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm NEMO-3 detector 20 Frejus underground laboratory 4800 m.w.e. Source: 10 kg of bb isotopes, foil ~ 50mg/cm2 sectors Tracking detector: drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H2O sxy=0,6 cm; sz=1,3 cm; Calorimeter: 1940 plastic scintillators coupled to low radioactivity PMTs 3m FWHM=14% (5”); 17% (3”) @ 1MeV Time resolution = 0.25 ns @ 1MeV g detection efficiency ≈ 50 % Magnetic field: 25 Gauss (3% e+/econfusion @ 1 MeV) Gamma shield: Iron (e = 18 cm) Neutron shield: 30 cm water + boron B (25 G) (ext. wall); 40 cm wood (top and bottom) Able to identify e-, e+, g and a NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Cathodic rings Wire chamber PMTs Calibration tube scintillators bb isotope foils NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm bb isotopes in NEMO-3 bb2n measurement 116Cd 405 g Qbb = 2805 keV 96Zr 9.4 g Qbb = 3350 keV 150Nd 37.0 g Qbb = 3367 keV 48Ca 7.0 g Qbb = 4272 keV 130Te 454 g Qbb = 2529 keV 100Mo 6.914 kg Qbb = 3034 keV 82Se 0.932 kg Qbb = 2995 keV natTe 491 g Cu 621 g Background measurement bb0n search NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Background model External background Detector radioactivity (PMT, iron, g flux from lab). Measured by g Compton scattering in the foil. Radon in tracking chamber 214Bi pollution of wires and foil surfaces. Measured by delayed 214Po a-decay. Source foil Internal radioactivity. e and eg events from foil. bb2n decay NEMO 3 and SuperNEMO experiments Cu foil SNOW 2006, Stockholm Radon free air facility adsorption unit @ -50°C buffer 15 Bq/m3 15 mBq/m3 compressor 9-10 bar In the tent around NEMO 3 Rn = 150 mBq/m3 In the tracker Rn = 4.5 mBq/m3 does not depend any more from Rn level in the tent. 2 sets of data Phase-I, before 4/10/04, Rn ≈ 22.2 mBq/m3, Phase-II, Rn=4.5 mBq/m3 dryer NEMO 3 and SuperNEMO experiments cooler & heater SNOW 2006, Stockholm bb results for 100Mo SSD simulation T1/2 = 7.11 ± 0.02 (stat) ± 0.54 (syst) 1018 y Phys Rev Lett 95, 182302 (2005) SSD model confirmed HSDof, higher 100Ru levels Decay to the excited 0+ state contribute to the decay T1/2 = 5.7 ± 1.3 (stat) ± 0.8 (syst) 1020 y To be published soon 1+ + 0+ bb0n SSD, 1 level Phase I + II ( 587d)dominates in the decay 100Tc (Abad et al., 1984, Use MC Limit approach: shape information, Ann. Fis. A 80, 9) differentSingle background for PI and PII 100Mo electronlevel spectrum different E1+E2>2between MeV SSD and HSD 12952 evs MC = 12928 ± 70 e0n=18.1 % T1/2 > 5.6∙1023 y, 90% CL Simkovic, J. Phys. G, 27, 2233, 2001 Window method [2.78-3.20] MeV, (690d) 14 evs MC = 13.4 e0n=8.2 % NEMO 3 and SuperNEMO experiments T1/2 > 5.8∙1023 y, 90% CL Esingle (keV) SNOW 2006, Stockholm bb results for 82Se T1/2 = 9.6 ± 0.3 (stat) ± 1.0 (syst) 1019 y Phys Rev Lett 95, 182302 (2005) bb0n Phase I + II ( 587d) Use MC Limit approach E1+E2>2 MeV 238 evs MC = 240.5 ± 7 e0n=17.6 % T1/2 > 2.7∙1023 y, 90% CL Window method [2.62-3.20] MeV, (690d) 7 evs MC = 6.4 e0n=14.4 % T > 2.1∙1023 y, 90% CL NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm bb2n decay for other isotopes 116Cd, T1/2=(2.8±0.1(stat)±0.3(syst))∙1019 y 150Nd , T1/2=(9.7±0.7(stat) ±1.0(syst))∙1018y 96Zr, T1/2 =(2.0±0.3(stat)±0.2(syst))∙1019y 48Ca, T1/2=(5.3±0.9(stat)±0.5(syst))∙1019 y Very preliminary results, to be crosschecked and published soon NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Exotic processes search V+A current in electroweak lagrangian Neutrino coupled axions c (majorons) V+A * n=1 ** n=2 ** n=3 ** n=7 ** Mo >3.2∙1023 l<1.8∙10-6 [1] >2.7∙1022 g<(0.4-1.8)∙10-4 [3] >1.7∙1022 >1.0∙1022 >7∙1019 Se >1.2∙1023 l<2.8∙10-6 [2] >1.5∙1022 g<(0.7-1.9)∙10-4 [3] >6.0∙1021 >3.1∙1021 >5.0∙1020 * new PI+PII data ** R.Arnold et al. Nucl. Phys. A765 (2006) 483 NME Calculations: [1] J. Suhonen, Nucl. Phys. A 700 (2002) 649 [2] M. Aunola and J. Suhonen, Nucl. Phys. A 463 (1998) 207 [3] F. Simkovic et al., Phys. Rev. C 60 (1999) 055502; S.Stoica and H. Klapdor-Kleingrothaus, Nucl. Phys. A 694 (2001) 269; O. Civatarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867 NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm SuperNEMO project extension of NEMO 3 technique 100 kg of isotopes, thin source between tracking volumes, surrounded by calorimeter. sensitivity 1-2∙1026 y, 40-70 meV main improvements needed: energy resolution (8% FWHM @ 1MeV ≡ 4% @ 3MeV) detection efficiency (factor 2) source radio purity (factor 10) background rejection methods NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm SuperNEMO milestones 2006-8: Design study Calorimeter Tracker Source Site selection (Frejus, Gran Sasso, Canfranc, Bulby) Approved and funded R&D program in UK and France. Spain, Russian and Japan groups applied for funding. end 2008: Full Proposal 2009 – 2011: Production 2010-2011: Start taking data 2015: planned sensitivity ~0.04 eV NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Modular design source tracker calorimeter 1m 4m 5m Top view NEMO 3 and SuperNEMO experiments Side view SNOW 2006, Stockholm Alternative design (bar scintillator) Double sided readout NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Calorimeter R&D so far 7-8% FWHM @ 1MeV for small scintillator 5x5x2 cm 9% FWHM @ 1 MeV for 15x15x2 cm … but because of light guide! 11-13% FWHM @ 1 MeV for 200 cm bar scintillator. Attenuation length 150 cm! looking for better plastic. NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Wiring robot The challenge: from 6,000 to ~60,000+ cells Wires must be strung terminated crimped This can not be done manually (~10 min/wire) Complications Copper pick-ups Must be cost effective NEMO 3 and SuperNEMO experiments Solder can not be used (radiopurity) SNOW 2006, Stockholm BiPo device, ultra low purity msr. WHY? g spectroscopy doesnt sensitive to purity level required ~10 mBq/kg Bi-Po Process 238U b 214Po (164 ms) a 214Bi (19.9 mn) 0.021% 210Pb Q MeMeV Qbb(214 (212Bi)=3.2 Bi) = 2.2 e- prompt Scintillator + PMT e- e- a delay 22.3 y Tracking (wire chamber) 210Tl (1.3 mn) a 232Th b 212Bi 36% (60.5 mn) 208Tl (3.1 mn) Source foil (40 mg/cm2) 212Po (300 ns) a 208Pb (stable) Delay a Shield radon, neutron,g T1/2 ~ 300 ns Edeposited ~ 1 MeV 2 modules 23 m2 → 12 m2 Background < 1 event / month NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Isotope choice Detector allows to hold any isotope. Choice depends on: - enrichment possibilities. Obligatory! - Qbb value (phase space factor, background) - bb(2n) life-time 82Se good candidate 100 kg per 2-3 y enrichment rate possible in Russia Qbb = 2995 keV. Concern about 214Bi and 208Tl only. test 2kg sample produced. Under purification now 150Nd even better! SILVA group (SACLAY, France) was contacted. 150Nd enrichment is possible! Qbb = 3367 keV. Concern about 208Tl only Large phasespace. 2n tale only 1.6 bigger then for 82Se NME & G0n much better then for 82Se NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm Conclusion NEMO 3 is continuing to take data no bb0n signal so far. 100Mo: *F. T1/2>5.8∙1023 y; mn<0.6-1.0 eV* 82Se: T1/2>2.1∙1023 y; mn<1.2-2.5 eV* Simkovic et al., Phys. Rev. C 60 (1999) 055502; S.Stoica and H. KlapdorKleingrothaus, Nucl. Phys. A 694 (2001) 269; O. Civatarese and J. Suhonen, Nucl. Phys. A 729 (2003) 867 a number of bb2n results to be published soon SuperNEMO R&D is in progress. 3 year program funded in UK and France. NEMO 3 and SuperNEMO experiments SNOW 2006, Stockholm WE ARE IN THE MIDDLE OF THE ROAD EXIT THAT COULD LEAD BEYOND SM thank you for your attention!