Простейшая механическая модель лука

Download Report

Transcript Простейшая механическая модель лука

Ksenia P. Frolova (student of SPbSTU, Department
for Theoretical Mechanics)
Оlga S. Loboda (PhD SPbSTU, Department
for Theoretical Mechanics)
Plan of the presentation

Brief review
Problem definition
Results
Experiment
Conclusion
2
Principle of action

Limbs bending
3
Classification of the bow

Types of the bow
4
Compound bow

Limbs bending
5
Problem definition

Modeling:
1. Straight rigid beams jointed with a spiral spring
2. Thin flexible beams; deformations are small
 Function F(𝑥)
dynamic curve
 Energy
 Initial velocity of arrow
Compound bows: Comparison with classical bows
6
Model №1

 Limbs are absolutely rigid rods
 Spiral spring placed between the rods
 Bow string is inextensible
1 – spring, 2 – limbs, 3 – bow string
7
Problem definition №1

M= 𝑐𝜑
Tℎ = M
F = 2Tcos𝛽
𝑐𝜑
F=2
cos𝛽
ℎ
M – spring moment
с – spring stiffness
𝜑/2 – angle of limb deviation
T – bow string tension force
F – bow tension force
𝛽 – angle between the spring
and the line of it’s removal
8
Function F(x)

𝐹 ′ (0)
𝐹 ′′ (0) 2 𝐹 ′′′ (0) 3
𝐹(𝑥)=F(0)+
𝑥+
𝑥 +
𝑥 +…
1!
2!
3!
2𝑐(𝑙 2 − 2𝑥02 ) 3
𝐹(𝑥)= 2 2 2
𝑥
2
𝑙 𝑥0 (𝑙 − 𝑥0 )
cubic
dependence
9
Energy,
Initial velocity of arrow

Energy
Initial velocity
of arrow
𝑐 (𝑙 2 − 2𝑥02 )
4
U=
𝑥
2𝑥02 𝑙 2 (𝑙 2 − 𝑥02 )
𝑉0 =
2 𝑐(𝑙 2 − 2𝑥02 )
𝑙𝑥0 𝑚(𝑙 2 − 𝑥02 )
𝑥2
10
Model №2

 Linear theory
 Static task
 Limbs - Bernoulli-Euler beams
11
Problem definition №2

𝐍′ = 0
M’ + 𝝉 × 𝐍= 0
ε = u’ + 𝝉 × 𝝍 = 0
𝟏
Ф=(с 𝒌𝒌
1
+
𝟏
𝒏𝒏
с2
+
M = Mk
Ф= 𝝍′
𝟏
с3
𝝉 𝝉 )∙M
N – force in cross-section of
the limb
M – moment in crosssection of the limb
𝝉 – vector of limb tangent
ε – deformation shift vector
u –removal vector
𝝍 – turn vector
Ф – deformation vector
с1, с2, с3 – stiffness tensor
components
12
Solution

boundary conditions:
u|s=0 = 0
𝜓|s=0 = 0
N|s=l = N0
M|s=l = 0
u – movement vector
𝜓 - turn vector
N – force in cross-section
of the limb
M – moment in crosssection of the limb
s – coordinate along the
limb
l – length of the limb
u|s=l =
𝑙3
N0
3𝑐1
u – movement vector
N0 – force in cross-section
of the limb
13
Decision

𝑥 F =
𝑝2
− (𝑙𝑠𝑖𝑛𝛼 −
𝑙3
F𝑐𝑡𝑔𝛼)2
6с1
+ 𝑙𝑐𝑜𝑠𝛼+
𝑙3
6с1
F − 𝑥0
3с1 𝑠𝑖𝑛𝛼( 𝑥 + 𝑥0 𝑠𝑖𝑛𝛼 + 𝑝2 − (𝑙 − 𝑥 + 𝑥0 𝑐𝑜𝑠𝛼)2 )
𝑉0 = 2
𝑥
3
𝑚𝑙
14
Modeling of compound bow

BC
F
T
AB
F – cable tension force ,
T – string tension force
15
Experiment №1

b
o
w
Fixing of the handle
loads
Measurement of
spring removal
16
Experiment №2

compound bow «Ястреб»
block
17
List of parameters №1

Parameter
Designation
Value
Length of the limb
l
0.650 m
Considering length of
the string
p
0.625 m
Initial removal
x0
0.180 m
Young modulus
E
21 GPa
Cross-section height
h
0.009 m
Cross-section width
b = b(z), z=[0..l], (м)
b = 0.0316z+0.01, m
Fmax
11.5 kgf
Maximum effort
18
List of parameters №2
Parameter

Designation
Parameter
Designation
Length of the
limb
0.410 m
Radius of the
big
block
0.027 м
Length of the
string
1. 032 m
Radius of the
small
block
0.020 м
Length of the
cable
1.040 m
Initial removal
0.190 м
20 kgf
Height
width
of cross-section
0.008 м
0.05 0.08 м
Maximum
effort
19
Bow stiffness in model №1

The Method of Least Squares
𝑁
S=
Fэксп
𝑖=1
𝑙2
2
2𝑐
− 2𝑥0
3
𝑥𝑖 − 2 2 2
𝑥
𝑙 𝑥0 𝑙 − 𝑥02 𝑖
2
𝜕𝑆
=0
𝜕𝑐
𝑐 = 23.169 N ∙ m
20
Bow stiffness in model №2

с = 𝐸𝐼
bℎ3
I=
12
𝑏 = 0.0316𝑧 + 0.01
𝑐 = 24.852 Н ∙ м2
E – Young modulus,
I – moment of inertia of cross-section of the limb
21
Dynamic curve

22
Bow energy

23
Initial velocity of arrow

24
Dependence of effort from
removal

25
Conclusion

1.
Mathematical description of bow with straight rigid limbs
jointed with a spiral spring
2. Mathematical description of bow with thin flexible limbs
 Bows with flexible beams more powerful then bows with straight rigid
beams
 Model of bow with flexible beams describe the real construction more
correctly. It is also more effective.
 System of blocks can be used in more powerful bows
26
REFERENCES
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Б.А. Виноградский. Анализ состояния и перспективы развития стрельбы из лука в мире с учетом результатов 28 Олимпийских
игр в Афинах // Наука в олимпийском спорте – 2005 - № 2 - с. 60 – 68.
I.F. Zaniewski. Modeling of the archery bow and arrow vibrations // Shock and Vibration – 2009 - №3 - p. 307 – 317.
С. Кондратьев. Термины в стрельбе из лука [электронный ресурс] // Стрельба из лука: [сайт ] – 2011 – URL: http://www.archerysila.ru/
Э. Макьюэн, А. Миллер, А. Бергман. Конструкция и изготовление древних луков. // В мире науки – 1991 - № 8 - с. 38–75.
В.Н. Казанцев. Пособие для начинающих лучников [электронный ресурс] // Стрельба из лука: [сайт ] – 2009 – URL:
http://www.archery-sila.ru/
И.Ф. Заневский. Компьютерная модель внутренней баллистики стрелы лука // Сборник научных трудов "Вестник НТУ "ХПИ":
Информатика и моделирование – 2011 - №36 - c. 78 – 86.
C.N. Hickman. Dynamics of a bow and arrow // Journal of Applied Physics – 1937 - V. 8 - p. 404-409.
B.W. Kooi, J.A. Sparenberg. On the static deformation of a bow // Journal of Engineering Mathematics – 1980 - V. 14, № 1 - p.
27-45.
А.А. Лужин. Моделирование выстрела из лука: дис. на соискание ученой степени канд. физ.-мат. Наук – Москва, 2008 - 103 с.
T.M. Hamilton. Native American Bow. Columbia: Published by Missouri Archeological Society, 1982 – 148 p.
B.W. Kooi. Archery and mathematical modeling // Journal of The Society of Archer-Antiquaries – 1991 - V.34,.p. 21 – 29.
J.L. Park. The behaviour of an arrow shot from a compound archery bow // Proc. Of the IMechE, Part P: Journal of Sports
Engineering and Technology. – 2011. – V. 225, № 8. – p. 8 - 21.
П.А. Жилин. Прикладная механика. Теория тонких упругих стержней. СПб.: Изд-во Политехнического университета, 2007 - 101
с.
J.E. Gordon. Structures, or why Things don't Fall Down. Harmondsworth: Published by the Penguin Books, 1978 – 395 p.
27