Chance or Chaos? Quantifying nonlinearity and chaoticity

Download Report

Transcript Chance or Chaos? Quantifying nonlinearity and chaoticity

L’Aquila
Chance or Chaos?
Quantifying nonlinearity and chaoticity in
observed geophysical timeseries
Gabriele Curci
Università degli Studi dell’Aquila (ITALY)
http://www.aquila.infn.it/people/Gabriele.Curci.html/
Potsdam Institute for Climate Impact Research
13-14 January 2005
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
1 of 26
Summary
L’Aquila
• The Climate System
• Chaos useful in
practice
• Detecting nonlinearity
and chaos in
observed timeseries
• Applications: very first
results
• Conclusions and
future developments
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
2 of 26
Earth’s Climate System
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
3 of 26
Understanding the Climate System
L’Aquila
• Two “opposite” needs:
– Increase the number
of observations (scalar
timeseries)
– Condense the
knowledge in a theory
(e.g. to allow
predictions)

s(t )s( x (t ))


x  F (x )
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
4 of 26
Observation of the Climate System
L’Aquila
NH Temperature
Ozone Hole Area
Surface Temperature in L’Aquila
Surface Wind Speed in L’Aquila
Etc.,
etc,,
etc…
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
5 of 26
Chaos and Climate
L’Aquila
• An “irregular” behavior is
natural in system with a
large number of degrees
of freedom (stochasticity)
• Deterministic chaos could
explain irregular
dynamics also with a few
degrees of freedom
• Detecting lowdimensional chaos in a
given phenomenon is
very useful for modelling
and near-term
predictability
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
6 of 26
DETECTING CHAOS
Practical difficulties with observed
timeseries
L’Aquila
• We observe just one or a
few variables of the
system
• Noise: if very high, it
masks the chaotic signal
• Finite length and missing
data
• The common tools for
detecting chaos
(Lyapunov exp,
correlation dimension)
are uneffective
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
7 of 26
DETECTING CHAOS
Null hypotheses and surrogate data
L’Aquila
• Before attempting to use complicated timeseries
analysis tools one should try to establish the
presence of nonlinearity
• First, a null hypothesis for the underlying
process is formulated (e.g. Gaussian linear)
• Second, we build surrogate data that accurately
represent the null hypothesis
• Third, we try to find a system parameter that is
capable to detect a meaningful deviation of the
data from the null hypothesis (surrogates)
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
8 of 26
DETECTING CHAOS
Null hypotheses we can test against
and corresponding surrogates
L’Aquila
1. Independence: random draws from a fixed
probability distribution.
•
•
Random shuffling of the data
Filter with an AR linear model and shuffle the
residuals
2. Gaussian linear stochastic: process
completely specified by its mean, variance,
and auto-correlation, or equivalently Fourier
amplitudes.
•
•
Random shuffling of Fourier amplitudes
General constrained randomization (same autocorr)
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
9 of 26
DETECTING CHAOS
Nonlinear prediction
L’Aquila
A prediction on the state of the system is performed averaging on
the evolution of the neighbours of the initial state
sˆn k
1

NU n
s
s j U n
j k
Un = neighbourhoods of sn
{sj} = neighbours of sn
Un
Un+k
sn
k steps ahead
ŝn+k
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
10 of 26
DETECTING CHAOS
Schreiber et al. method
AR(1): x(n+1) = 0.99 x(n) + noise(n)
L’Aquila
AR(1) measured by y(n) = x(n)^3
obs
surr
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
11 of 26
DETECTING CHAOS
Schreiber et al. method
L’Aquila
Lorenz’ system + 10% noise
Sine wave + 50% noise
obs
surr
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
12 of 26
DETECTING CHAOS
Marzocchi et al. method
L’Aquila
Logistic map + 10% noise
1. Evaluate errors: if S/N
ratio<40-50% quit
2. Apply AR filter to data: a
nonlinear system has
correlated residuals
3. Nonlinear prediction vs.
embedding dimension
4. Compare with
surrogates
Henon map + 10% noise
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
13 of 26
DETECTING CHAOS
Basu et al.: Transportation distance
L’Aquila
The difference between two timeseries is usually measured in a
geometrical sense. We can include information about the “similarity” of
the attractors introducing the “transportation distance”
Problem: how does it cost going from
configuration P to Q? The “transportation
distance” is the combination of moves with
the overall minimum cost
The transportation distance is efficiently
solved by a transshipment problem
algorithm [Moeckel and Murray, 1997].
It is based on both geometrical and
probabilistic and it is less sensitive to
outliers, noise and discretization errors.
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
14 of 26
DETECTING CHAOS
Basu et al. method
L’Aquila
Lorenz’ system + 30% noise
• Compare the distribution
of the transportation
distance between original
data and surrogates (OS)
and among surrogates
(MS)
• Transportation distance
between original
timeseries and its
nonlinear prediction kstep ahead
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
15 of 26
Application: SOI and NAO
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
16 of 26
SOI and NAO: test against
randomness
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
17 of 26
SOI and NAO: test against Gaussian
linear process
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
18 of 26
SOI as Gaussian linear process
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
19 of 26
Is GW injecting randomness into the
Climate System? [Tsonis, Eos 2004]
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
20 of 26
Is GW injecting randomness?
Results w/ nonlinear prediction
L’Aquila
Degree Of
Randomness (DOR)
DOR 
err (obs)  err ( surr)
err (obs)
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
21 of 26
Winds over different topography
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
22 of 26
Winds over different topography
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
L’Aquila
23 of 26
Future Developments
L’Aquila
• Setup a reliable procedure to determine
the presence and the degree of
nonlinearity of a timeseries using the
mentioned ideas
• Model-observation comparison (degree of
nonlinearity, variability…)
• Model parameters tuning
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
24 of 26
References
L’Aquila
• Schreiber, T. (1999), Interdisciplinary application
of nonlinear time series methods, Physics
Reports, 308, 1-64
• Marzocchi, W., F. Mulargia and G. Gonzato
(1997), Detecting low-dimensional chaos in
geophysical time series, J. Geophys. Res.,
102(B2), 3195-3209
• Basu S. and E. Foufoula-Georgiou (2002),
Detection of nonlinearity and chaoticity in time
series using the transportation distance function,
Phys. Let. A, 301, 413-423
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
25 of 26
L’Aquila
THE END
Thanks a lot!
Gabriele Curci, University of L’Aquila
Climate 2005, PIK, 13-14 Jan 2005 http://www.aquila.infn.it/people/Gabriele.Curci.html/
Atmospheric Physics Group: http://www.aquila.infn.it/atmosfera/
“Chance or Chaos?”
26 of 26