Transcript Document
Bulk Properties of QCD Matter Many thanks to organizers ! Kai Schweda, University of Heidelberg / GSI Darmstadt 1/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Outline Introduction Hadron Abundances - Tch Collective Flow - Tfo, Heavy Quarks - open charm and quarkonia 2/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Introduction XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Quark Gluon Plasma Source: Michael Turner, National Geographic (1996) Quark Gluon Plasma: (a) Deconfined and (b) thermalized state of quarks and gluons Study partonic EOS at RHIC and LHC (?) Probe thermalization using heavy-quarks 4/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Nuclear phase diagram Energy scan 1) Heavy quarks with ALICE at LHC: - Study medium properties - pQCD in hot and dense environment 2) FAIR/GSI program: - Search for the possible phase boundary. - Chiral symmetry restoration XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Colliding Heavy Nuclei 6/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda High-Energy Nuclear Collisions Time CYM & LGT 1) Initial condition: 2) System evolves: 3) Bulk freeze-out PCM & clust. hadronization -Baryon transfer - parton/hadron expansion - hadronic dof NFD - ET production - inel. interactions cease: NFD & hadronic TM particle ratios, Tch, mB -Partonic dof string & hadronic TM PCM & hadronic TM Plot: Steffen A. Bass, Duke University 7/62 - elas. interactions cease Particle spectra, Tth, <T> XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Collision Geometry Au + Au sNN = 200 GeV Non-central Collisions Uncorrected Number of participants: number of incoming nucleons in the overlap region Number of binary collisions: number of inelastic nucleon-nucleon collisions Charged particle multiplicity Reaction plane: x-z plane 8/62 collision centrality XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Hadron Abundances XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Particle Multilplicities PHOBOS fit HIJING BBar Armesto et al. AMPT Eskola CGC KLN ASW DPMJET-III EHNRR at LHC, dN/dh 1000 3000 1 1 dE estimate energy density Bj R 2 dyT 0 PHOBOS compilation: W. Busza, SQM07. 10/62 Theory points: HI at LHC – last call for predictions, CERN, May 2007. XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda EoS from Lattice QCD 1) Large increase in ! SPS RHIC LHC ? Large increase in Ndof: Hadrons vs. partons 2) TC ~ 160 MeV 3) Boxes indicate max. initial temperatures Longest expansion duration at LHC Expect large partonic collectivity at LHC Z. Fodor et al, JHEP 0203:014(02) C.R. Allton et al, hep-lat/0204010 F. Karsch, Nucl. Phys. A698, 199c(02). 11/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda HI - Collision History QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Tc(ritical): quarks and gluon hadrons, Tc(ritical) = 160 MeV Tch(emical): hadron abundancies freeze out Tfo: particle spectra freeze out Plot: R. Stock, arXiv:0807.1610 [nucl-ex]. 12/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Solar Spectrum Wavelength and Intensity solely determined by temperature Tsolar = 5500 °C (at the sun’s surface) Graphik: Max-Plack-Institut für Plasmaphysik 13/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Wie heiss ist die Quelle ? 1000 Lichtquelle Teilchenquelle N Teilchenhäufigkeit Häufigkeit von Teilchen am K+ 100. besten beschrieben durch L K0 K- h N 10.0 T = 2 000 000 000 000 C X f L = 2 Trillionen C W 1.0 100 000 mal heisser als im Innern der Sonne ! X W 0.1 0 0.4 0.8 1.2 1.6 E = mc2 (GeV) 14/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Chemical Freeze-out Model Hadron resonance ideal gas Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger et al., nucl-th/0304013 Density of particle i Qi : 1 for u and d, -1 for u and d si : 1 for s, -1 for s gi : spin-isospin freedom mi : particle mass mB = 3mq mS = mq-ms Tch mq ms V gs : Chemical freeze-out temperature : light-quark chemical potential : strange-quark chemical potential : volume term, drops out for ratios! : strangeness under-saturation factor All resonances and unstable particles are decayed Compare particle ratios to experimental data 15/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Hadron Yield Ratios 1) At RHIC: Tch = 160 ± 10 MeV mB = 25 ± 5 MeV 2) gS = 1. The hadronic system is thermalized at RHIC. 3) Short-lived resonances show deviations. There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/0304013. XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Chemical Freeze-Out vs Energy With increasing energy: • Tch increases and saturates at Tch = 160 MeV • Coincides with Hagedorn temperature • Coincides with early lattice results limiting temperature for hadrons, Tch 160 MeV ! mB decreases, mB = 1MeV at LHC Nearly net-baryon free ! A. Andronic et al., NPA 772 (2006) 167. 17/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda QCD Phase Diagram QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 18/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Baryon Ratios With increasing energy: • Baryon ratios approach unity • At LHC, pbar / p 0.95 with increasing collision energy, production of matter and anti-matter gets closer Compilation: N. Xu 19/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda ‘Elementary’ p+p Collisions Low multiplicities use canonical ensemble: Strangeness locally conserved! particle yields are well reproduced Strangeness not equilibrated ! (gs = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997). 20/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda HI - Collision History QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Tc(ritical): quarks and gluon hadrons, Tc(ritical) = 160 MeV Tch(emical): hadron abundancies freeze out, Tch(emical) = 160 MeV Tfo: particle spectra freeze out Plot: R. Stock, arXiv:0807.1610 [nucl-ex]. 21/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Collective Flow XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Pressure, Flow, … Thermodynamic identity – entropy p – pressure U – energy V – volume = kBT, thermal energy per dof d dU pdV In A+A collisions, interactions among constituents and density distribution lead to: pressure gradient collective flow 23/62 number of degrees of freedom (dof) Equation of State (EOS) cumulative – partonic + hadronic XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Momentum Distributions* 2 dN [(GeV/c)-1 ] 2 dpT dy K (dE/dx) p K (dE/dx) Tth=107±8 [MeV] <t>=0.55±0.08 [c] n=0.65±0.09 2/dof=106/90 solid lines: fit range p L • Typical mass ordering in inverse slope from light to heavier L • Two-parameter fit describes yields of , K, p, L • Tth = 90 10 MeV • <t> = 0.55 0.08 c Disentangle collective motion from thermal L random walk pT [GeV/c] *Au+Au @130 GeV, STAR 24/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda (anti-)Protons From RHIC More central collisions Au+Au@130GeV mT pT2 mass 2 Centrality dependence: - spectra at low momentum de-populated, become flatter at larger momentum stronger collective flow in more central coll.! STAR: Phys. Rev. C70, 041901(R). 25/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Thermal Model + Radial Flow Fit Source is assumed to be: – in local thermal equilibration: Tfo – boosted in transverse radial direction: r = f(s) boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993) d 3N (u m p m )/T fo E 3 e pd m dp random m coshr p sinh r R dN 0 rdrmT K1 T I0 T mT dmT Tfo Tfo r tanh1 T 26/62 r T S R 0.5, 1, 2 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda D-meson collective flow Large collective flow velocity Spectrum moves to larger momentum 27/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda HI - Collision History QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. Tc(ritical): quarks and gluon hadrons, Tc(ritical) = 160 MeV Tch(emical): hadron abundancies freeze out, Tch(emical) = 160 MeV Tfo: particle spectra freeze out, Tfo 100 MeV :, K, p Plot: R. Stock, arXiv:0807.1610 [nucl-ex]. 28/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Kinetic Freeze-out at RHIC 1) Multi-strange hadrons f and W freeze-out earlier than (, K, p) Collectivity prior to hadronization STAR Preliminary 2) Sudden single freeze-out*: Resonance decays lower Tfo for (, K, p) Collectivity prior to hadronization Partonic Collectivity ? STAR Data: Nucl. Phys. A757, (2005 102), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779. 29/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Anisotropy Parameter v2 coordinate-space-anisotropy momentum-space-anisotropy y x y2 x2 2 y x2 py v 2 cos2 , tan ( ) px 1 Initial/final conditions, EoS, degrees of freedom v2 in the Low-pT Region - v2 approx. linear in pT, mass ordering from light to heavier L characteristic of hydrodynamic flow ! sensitive to equation of state 31/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Non-ideal Hydro-dynamics h s finite shear viscosity h reduces elliptic flow many caveats, e.g.: - initial eccentricity (Glauber, CGC, …) - equation of state - hadronic contribution to h/s 6/4 String theory predicts: h/s > 1/4 M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663. 32/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Elliptic Flow vs Collision Energy Glauber initial conditions Centrality dependence: - initial eccentricity - overlap area S QuickTime™ and a decompressor are needed to see this picture. Collision energy dep.: - multiplicity density dNch/dy in central collisions at RHIC, hydro-limit seems reached ! NA49, Phys. Rev. C68, 034903 (2003); STAR, Phys. Rev. C66, 034904 (2002); Hydro-calcs.: P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev.C62, 054909 (2000). 33/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda v2 of f and multi-strange W Strange-quark flow - partonic collectivity at RHIC ! QM05 conference: M. Oldenburg; nucl-ex/0510026. 34/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Collectivity, Deconfinement at RHIC - v2, spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have: Partonic Collectivity Deconfinement Thermalization ? PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04) S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, 034904(03) X. Dong, et al., Phys. Lett. B597, 328(04). …. 35/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Collectivity Energy Dependence Collectivity parameters <T> and <v2> increase with collision energy strong collective expansion at RHIC ! QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. <T>RHIC 0.6 expect strong partonic expansion at LHC, <T>LHC 0.8, Tfo Tch K.S., ISMD07, arXiv:0801.1436 [nucl-ex]. 36/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Partonic Collectivity at RHIC 1) Copiously produced hadrons freeze-out ,K,p: Tfo = 100 MeV, T = 0.6 (c) > T(SPS) 2) Multi-strange hadrons freeze-out: Tfo = 160-170 MeV (~ Tch), T = 0.4 (c) 3) Multi-strange v2: f and multi-strange hadrons X and W do flow! 4) Model - dependent h/s: (0?),1 - 10 x 1/4 Deconfinement & Partonic (u,d,s) Collectivity ! 37/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Heavy Quarks XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Heavy flavor: a unique probe mc,b >> LQCD : new scale mc,b const., mu,d,s ≠ const. Q2 • initial conditions: cc bb test pQCD, mR, mF probe gluon distribution • early partonic stage: diffusion (g), drag (), flow probe thermalization X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. time • hadronization: chiral symmetry restoration confinement statistical coalescence J/ enhancement / suppression XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Limitations in PDFs Most charm created from gluons, e.g. g+g c + cbar increasing uncertainties in gluon distribution at smaller Bjorken x: Assume y=0, pT=0, x1=x2 2 x mcharm 3 GeV RHIC (s=0.2TeV): x = 0.015 LHC (s=14TeV): x = 2x10-4 40/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Heavy Quark Production Heavy-quark production at LHC, compared to RHIC expect factors Charm 10 Beauty 100 (i) Heavy-quarks abundantly produced at LHC energies ! (ii) Large theoretical uncertainties energy scan (LHC,FAIR) will help ! Plots: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008). 41/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Heavy quark Correlations PYTHIA: p + p @ 14 TeV c-cbar mesons are correlated • Pair creation: back to back • Gluon splitting: forward • Flavor excitation: flat Exhibits strong correlations ! Baseline at zero: clear measure of vanishing correlations ! probe thermalization among partons ! X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. G. Tsildeakis, H. Appelshäuser, K.S., J. Stachel, arXiv: 0908.0427. 42/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda How to measure HeavyQuark Production QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 43/62 e.g., D0, c = 123 mm displaced decay vertex is signature of heavy-quark decay need precise pointing to collision vertex XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Heavy Flavor production at RHIC large discrepancy between STAR and PHENIX: factor > 2 (!) need Si-vertex upgrades (> 2011) large theoretical uncertainties (factor > 10) Measure charm production at RHIC, LHC, FAIR and provide input to theory: - gluon distribution, - scales mR, mF Plot: J. Dunlop (STAR), QM2009, Open Heavy-flavor in heavy-ion collisions, Calcs: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008), M. Cacciari, 417th Heraeus Seminar, Bad Honnef (2008). 44/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Where does all the charm go? J Lc Ds D D0 Total charm cross section: open charm hadrons, e.g. D0, D*, Lc, … or c,b e(m) + X Hidden-charm mesons, e.g. J/ carry ~ 1 % of total charm Statistics plot: H. Yang and Y. Wang, U Heidelberg. 45/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda D0 + + K- Reconstruction + D 0, c = 123 mm K- Plot: A. Shabetai 46/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Open Charm Performance Measure secondary decay vertex Direct reconstruction of D0 address heavy-quark production with 1st year of data taking Many other channels, e.g. D+, D* Also: single-electrons from heavy-flavor decays ALICE: PPR.vol.II, J. Phys. G 32 (2006) 1295. Simulation: 109 p+p, 108 p+Pb, 107 Pb+Pb collisions 47/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda D* meson Identification D*+ D0 + + Identify D*+ QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. through M[D*+ - D0] Subtract resonance decay to D0 Two different methods to address total charm production D*± analysis: Yifei Wang, Ph.D. thesis, University of Heidelberg, in preparation. 48/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Viele neue interessante Signale in ALICE bei LHC: z.B. Hadronen mit schweren Quarks (charm und beauty) D0, D+, D*, Ds, J/ ’, Lc Lb 49/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Quarkonia XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Charmonium Bound state of charm- and anti-charm quark Hidden-charm meson mJ/ = 3.1 GeV, rJ/ = 0.45 fm, mJ/' = 3.6 GeV, JP = 1- states Minimum formation time = rJ/ / c = 0.45 fm Charm-quark production at time scale tc~ 1/2mc 0.08 fm Separation between initial production and hadronization (factorization) 51/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Debye Screening 52/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Quarkonia as a Thermometer Check for melting of bottomonium (b-bbar) at Tdeconfined 2 Tc Check for melting of charmonium (c-cbar) at Tdeconfined 1.2 Tc 53/62 Absolute numbers model-dependent Tfo: XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda J/ Production P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302. suppression, compared to scaled p+p (SPS) regeneration, enhancement Low energy (SPS): few ccbar quarks in the system suppression of J/ High energy (LHC): many ccbar pairs in the system enhancement of J/ Signal of de-confinement + thermalization of light quarks ! 54/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Statistical Hadronization of Charm large charm production at LHC strong generation of J/ cc striking centrality dependence Signature for QGP formation ! Initial conditions at LHC ? Need to measure total charm production in PbPb ! Assumes kinetic equilbration of charm ! A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 652 (2007) 259. 55/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Charmonium production In central Pb+Pb collisions at top SPS energy: J/’ to J/ ratio approaches thermal limit Indicates kinetic equilibration of charm 56/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Examples of the ALICE physics potential - Open charm: D0 K- + + (already shown) - Quarkonia: J/, - Global event properties Will be addressed in first year of pp collisions 57/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda First Physics with ALICE Results from simulations 1 day of data taking Address: - multiplicity - mean transverse momentum - hadro-chemistry 58/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Charmonia via Di-Electron Measurement • electron ID with TPC and TRD • expect 2500 mesons per Pb+Pb year with good mass resolution and S/B Simulation: pp coll. c1 c2 J/ Simulation: 2·108 central PbPb collisions 59/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda Heavy Flavor in Muon Channel • muon channel: J/, m+m- (2.5 <h< 4) 60000 J/ and 2000 • initial sample sufficient to study production rates of J/ and states in muon channel J/ bm 60/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda LHC: Schedule 1st pp collisions very short run at 900 GeV Nov 2009: Long run of pp collisions at 7- 10 TeV end of 2010: 3 - 4 weeks Pb+Pb collisions at 2.8 - 3.9 TeV *short technical stop over Christmas period 61/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda ALICE Ready for Physics ! 62/62 XXIII Graduate Days, Heidelberg, 5 9 Oct, 2009 Kai Schweda