Transcript Slide 1
Thermo and Bio-chemical Conversion Technologies OLADE ALFREDO BARRIGA, PHD ESPOL – ECUADOR September 2011 Biomass Natural Cycle Biomass in Ecuador Rice Husks Cane Bagasse Oil palm husks RESIDUAL BIOMASS FROM PLANTS PATHS FOR UTILIZATION OF BIOMASS FOR ENERGY BIOMASS Animal or vegetal Moist Obtained with moisture content above 60% Physical Precesses Drying-Compac Chopping Mechanical Press Biological Processes Fermentation (alcohol) Bacterian digestion Dry Obtained with moisture content below 60% Thermochemical Processes Combustion Pyrolisis Gasification Liquefaction Typical residual Biomass Crop residues, stalks and branches, etc. Bagasse from the process of extracting sugar cane juice (sugar production, alcohol, etc.). Rice hulls. Shell and oil palm bundle branches. Remains of wood industrialization planks, etc. bark, side cutting damaged Sawdust and wood shavings in a production of wooden elements. Biomass Characteristics Bagasse Chips from Olive tree(db) Cotton(db) Pine bark(db) Oak bark(db) Redwood bark (db) Ultimate analysis Carbon Hydrogen Nitrogen Sulphur Ashes Oxygen 23,4 2,8 0,1 0,6 1,7 20,0 49,52 5,90 0,39 <0,05 1,74 42,45 47,03 5,42 1,04 0,13 5,37 41,01 53,40 5,60 0,10 0,10 2,90 37,90 49,70 5,40 0,10 0,20 5,30 39,30 51,90 5,10 0,10 0,10 0,40 42,40 Immediate analysis Moisture Volatile Fixed Carbon Ashes 52,00 40,20 6,10 1,70 -81,79 16,47 1,74 -73,78 20,85 5,37 -72,9 24,2 2,90 -76,00 18,70 5,30 -72,60 27,00 0,40 HHV (kcal/kg) 2 224 4 610 4 297 5 021 4 654 4 643 25,21 6,59 2,98 2,61 2,36 39,00 14,0 3,0 -0,30 11,10 0,10 3,30 -2,00 14,30 4,00 3,50 -7,40 Ash Analysis SiO2 Al2O3 Fe2O3 P2O5 SO3 Biofuels Comparison Chart Ultimate analysis Carbon Hydrogen Nitrogen Sulphur Ashes Oxygen Proximate analysis Moisture Volatile Fixed Carbon Ashes HHV (kcal/kg) Gasoil Fuel Oil Natural Gas Coal Biomass (typical) 86,0 11,1 1,0 0,8 0,1 1,0 84,6 9,7 1,0 1,5 0,5 2,7 72,8 22,6 4,6 0,0 0,0 0,0 75,8 5,1 1,5 1,6 5,0 8,2 50,0 5,5 1,0 <0,2 2,0-5,0 40,0 1,0 1,5 0,0 5,0 35,0 50,0 10,0 variable 65,0 20,0 2,0-5,0 10 300 10 100 12 450 7 500 4 500 THERMO-CHEMICAL PROCESSES Thermochemical processes (pyrolysis, gasification and combustion) consist on the organic components decomposition of biomass at high temperatures. Main thermo-chemical processes are: Combustion Pyrolysis Gasification Thermal Decomposition Processes for Biomass LIGNOCELLULOSE IN AIR SCHEME COMBUSTION AIR FLAME CHAR ASH VOLATILE WOOD - CHARCOAL DRYING - ROASTING - PYROLYSIS COMBUSTION Pyrolysis Is the incomplete combustion of biomass at elevated temperatures in the absence of oxygen, around 500 degrees celsius. Charcoal is obtained by heating wood until its complete carbonization occurs, leaving only carbon and inorganic ash. In many parts of the world, charcoal is still produced by burning a pile of wood that has been mostly covered with mud or bricks during a lot of time, even days to relatively low temperatures (350 °C) BIOMASS + HEAT Carbon + Liquid + gaseous Gaseous fuel combustion (Methane) Liquid fuel combustion (fuel oil) Biomass fuel combustion (wood) Pyrolysis Technologies Technology Residence time Maximum Temperature (°C) Carbonization Hours-days 300-500 Charcoal 30 MJ/ Kg 400-600 Bio-óil. Coal. Gas 20 MJ/ Kg 30 MJ/ Kg 5-10 MJ/Nm3 450-600 Coal Gas 30MJ/ Kg 10-20 MJ/Nm3 700-900 Coal Gas 30 MJ/ Kg 15-20 MJ/Nm3 Slow Fast Fast 5-30 min. ≤1s ≤1s Main Product Calorific value(Dry basis) When biomass is subjected to pyrolysis, products obtained are such as: Solid (Charcoal) Liquid (Bio-fuel oil) (Bio-oil) Gases (Gaseous fuel with low or medium calorific value) Basic products in pyrolysis depend on: •Reactor temperature. •Heating rate related to the particle size. •Residence time of products inside reactor. •Technology and its operational parameters. COMBUSTION Combustion is a process in which biomass is oxidized to carbon dioxide (CO2), water. The overall equation of combustion reaction is the reverse of photosynthesis. BIOMASS + O2 CO2 + H2O + HEAT + (Other species)* * CO, HC, Soot, Oxidized minerals , tar, moisture and other Types of Biomass Combustion Chamber Main combustion technologies for biomass Biomass Combustion Technologies Grate combustion.of the following types: fixed bed, horizontal and inclined grate, mobile grate and vibrating grate. Fluidized bed: is based on the combustion reaction in a fluidized bed in which the fuel particles move similarly to those of a liquid. Moving Grate Fuente: Manual de Energía Térmica con biomasa Inclined Grate Furnace Fluidized bubbling bed furnace Operating Temperature in Chamber Operating temperature depends on several factors such as: Fuel Calorific Value. Biomass moisture. Excess Air Percentage. Heat transfer to the chamber walls. Heat loss to the outside. Combustion completion. Humidity effects on biomass calorific value Fluid Dynamic Effects of Particles Particles to fall freely in a fluid environment (air or combustion gases for example) fall at a rate dependent upon fluid forces (drag). These drag forces depend on the viscosity fluid, and the particle shape. In the case of irregular shaped particles, as are most of the biomass "chopped" as bagasse, husks, etc.. the drag coefficient depends on the wake formed by the passage downstream of the particle. Influx of chipped biomass through inlet Flame Shape in Biomass Combustion Flame shape depends on: Ratio of gas-phase combustion of pyrolysis products to rate of burning of the carbonaceous residue. Relative position of the biomass at the time of combustion. Geometry and distribution of air supply: from below the grate, and above it. Presence of vortex effects which are induced by tangential entry of air. Efficiency of various thermal processes with Biomass Process Intermediate Fuel Energetic content on initial biomass (%) Heat Combustion Pyrolysis (Carbonization) 70-75 Gasification 65-80 Electricity or mechanic work 65-95 20-35 60-70 22-30 22-27 Industrial Combustion Problems of Residual Biomass The main problems of residual biomass operation are: Formation of agglomerates and slag on the grate (slagging). Fouling on interior surfaces. Metal surfaces corrosion. Slag formed in Biomass Combustion Fouling on boiler tubes Control and Emissions Combustion plants produce effluent gases, solids and liquids. Particles are one of the most important emissions on biomass combustion. GAS TREATMENT SYSTEMS •CYCLONIC SYSTEMS •BAG FILTERS •WET SCRUBBER •ELECTROSTATIC FILTERS BIOGAS Biogas is the gaseous product of anaerobic digestion of organic waste under appropriate conditions of temperature, dilution, residence time, and others. It comprises approximately 60% of CH4 and CO2 rest, with small amounts of other gases. Organic substrates are used such as manure mixed with straw and agricultural residues and agro-industrial production. BIOGAS GENERATION PROCESS The raw material for biogas generation can be processed in either batch or semi continuous production. Reactors are built using metal, plastic or masonry components. Gas begins to appear a short time after initial loading of the reactor, first slowly, and not always generating combustible gases., Methane starts to appear under the right conditions, along with carbon dioxide in the form of biogas. The biogas generated is stored within the digester or in a separate container (GASHOLDER) which can be use outside the digester. The effluent contains some of the organic compounds and nutrients, which can be used as fertilizer. It also forms some bottom sludge, which need to be removed periodically. STEPS IN THE PRODUCTION OF BIOGAS Stage 1 Stage 2 Stage 3 Stage 4 • Hydrolysis or liquefaction • The hydrolytic enzymes produced by bacteria. Hydrolysis is therefore the conversion of polymers into their monomers. • Acido-genesis • The hydrolysis products are converted into organic acids such as acetic, propionic and butyric acids. • Aceto-genesis • The products concerned are converted to acetic acid, hydrogen and carbon dioxide. • Methano-genesis • At this stage metabolic CH4 is generated from acetic acid or mixtures of H2 and CO2, may also be formed from other substrates such as formic acid and methanol. CHARACTERICTICS OF BIOGAS Flash Point 700 º C (350 º C Diesel, gasoline and propane close to 500 º C). The flame temperature reaches 870 º C. Biogas typically contains: 60% methane (CH4) 40% of carbon dioxide (CO2). The longer the retention time, the higher the methane content, and that the calorific value. PARAMETERS AFFECTING THE OPERATION OF BIODIGESTOR •Daily amount of total solids. •Retention time. •Specific production of gas per day, depending on the raw material. •Mass temperature of the digester agitation. •Physical and chemical characteristics of the raw material. •Level of pH. •Presence of harmful elements. PRODUCTIVITY OF BIOGAS SYSTEM WITHOUT AGITATION Product Temperature (oC) Productivity (m3/kg) Content of methane % Retention Time (days) Cattle dung (India) 11-31 0.23 – 0.50 -- -- Cattle manure (Germany) 15.5 – 17.3 0.20 – 0.29 -- -- Chicken Manure 34.6 0.31* 60 30 pig manure 0.7 60 15 32.6 * Based on volatile solids Reference: Methane generation from human, animal, and agricultural waste. USA, Academy of Science, 1977 COMPARISON OF PRODUCTIVITY AND RETENTION TIME WITH CATTLE MANURE MIXTURES AGRICULTURAL WASTE Waste mixed with manure Production at 24 Production at days 80 days (m3/kg) (m3/kg) Content of methane at 21 days % None 0.063 0.21 60 Sugarcane 0.4% 0.07 0.21 58 Cellulose 1% 0.084 0.21 53 Sugarcane 1% + Urea 1% 0.087 0.26 68 Leaves 20% no pulses 0.081 0.22 68 Reference: Methane generation from human, animal, and agricultural waste. USA, Academy of Science, 1977 BIOGAS PRODUCTION FROM COW MANURE: Temperature and retention time Author’s own elaboration based on data from multiple sources NITROGEN CONTENT AND C/N Raw Material N (%) C/N Animal urine 15-18 0.8 Animal blood 10 14 3 Cow dung 1.7 18 Horse manure 2.3 25 Pig manure 3.8 -- Farm manure 2.15 14 Amaranth 3.6 11 Reference: Methane generation from human, animal, and agricultural waste. NITROGEN CONTENT AND C/N All materials are composed of fermentation mostly of carbon (C) and contain nitrogen (N). The C / N ratio influences the production of gas, this is optimal when C / N ranges between 20:1 and 30: 1. For example, chicken manure (high N) mixed with rice chaff, is a high gas production. If you suspect that digestion is being disturbed by toxic substances, add water or fermenting material, thus decreasing the concentration. PREPARATION OF THE MIXTURE SOURCE: ENYA AUXILIARY ELEMENTS FOR BIOGAS SOURCE: ENYA ANAEROBIC DIGESTION Anaerobic digestion and biogas anaerobic microbiological process is linked to the treatment of biodegradable waste and yielding as end product called "biogas", which is formed from organic matter biomass. It is therefore an environmental echnology energy component with an interesting ANAEROBIC DIGESTION OF BIOMASS NATURAL SYNTHETIC • DESCOMPOSITION OF TERRESTRIAL VEGETATION • DESCOMPOSITION OF ORGANIC MATTER ON WATER BODIES ANAEROBICS DIGESTER • Agricultural waste • Urban waste BIOGAS CH4 50-75% CO2 25-50% FUEL • Home • Transport • Electricity Generation Compost WASTE COMPOST • Agricultural use • High nutrient content LANDFILLS • Agricultural waste • Urban waste PRODUCTS 51 BIOMASS AS RENOVABLE SOURCE OF ENERGY Dr. Roberto Best y Brown BIODIGESTORS • Hindu Type www.energianatural.com.ar/biogas02.html Biodigestor Hindú Model www.energianatural.com.ar/biogas02.html BIODIGESTORS • Chinese type Biodigestor Chinese Model www.energianatural.com.ar/biogas02.html Biodigestors • MODERN TYPE - Has 2 Flexible membrane - Superior black membrane Horizontal Digestor, Plastic Cover http://www.ruralcostarica.com/biodigester.html