Transcript Slide 1
Radars in Helsinki Testbed Elena Saltikoff, FMI 17.7.2015 Tutkia tutkia – Radars to find out Where’s precipitation How much ? 5 min, 1 km res. Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 2 A radar does not measure precipitation, just scattering of microwaves P= Measured reflected power (watts 10-13) Clutter cancellation Z=Reflectivity by precipitation (dBZ) Assume precipitation type Z=aRb, assume a and b R=Rainfall intencity (mm/h) Integrated rainfall in N hours (mm) Rainfall in river catchment area (m3) Dual Pol can improve QPE by improving these Not so easy for gauges either Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 3 Reflectivity and velocity Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 4 Clutter can be defined as Microwaves scattered by unwanted objects Total dBZ Hills Ilmatieteen laitos / PowerPoint ohjeistus Velocity Hill speed zero m/s Filtered dBZ No hills Rho Sea clutter 17.7.2015 5 The bad news: we live on a spherical globe. For FMI standard products, we compensate as much as we can... Profile measurement volume h r Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 6 1(2) Weather Radars in Helsinki Testbed • Ready made datasets – gif images • dBZ: Reflectivity images every 15 minutes are composites of 4 FMI radars: Vantaa in the centre, Ikaalinen in Northwest, Korpo in Southwest and Anjalankoski in east • vpr: Vertical profiles of reflectivity separately from each above mentioned individual radar. Also as text files. • Rho and ZDR: dual polarization parameters hourly from Kumpula radar at Helsinki University Campus • Data archived as IRIS raw files (typically 2-8 Mb) • At FMI process in Jordan or in Harry • At University, process in Analysis • Possible to convert to other formats Radar data parameters • FMI data is the same from all radars, all campaigns • Kumpula radar data is different for each campaign • August 2005: 5 tasks repeated every 10 minutes • Nov 2005 and May 2005: two different schedules alternating, some tasks the same all month • Tasks described in a pdf at the testbed website • Inventory of datasets available too Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 8 Excercise: What is this ? Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 9 Radar scanning geometry in 3D Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 10 Kumpula August 2005 The task schedule consists of 5 subtasks, repeated every 10 minutes (10 minute interval longest acceptable for convection research) Task Main purpose Rang e/km Elevations /deg Mod e Moments PRF/H z Max wind PRO_A Good dBZ 150 0.8 1.7 2.7 FFT Z, T, V,W, SQI 1000 13.3 m/s PRO_B Dual pol low part 150 0.3 1.2 3.6 7.0 16 PPP Z, T, V,W, SQI ZDR, KDP, RhoHV, PhiDP 1000 13.3 m/s PRO_C Dual pol upper air 120 2.2 4.6 11.0 22 45 90 PPP As above 1200 16 m/s D_PRO Horizontal transmission, H+V receiving (for LDR) 120 2.2 4.6 45 (top to down) PPP Z,T,V,W,SQI LDR, RhoH, PhiH 1200 16 m/s E_PRE Dual PRF, 8-bit (for mesocyclone winds) 120 3.0 8.0 FFT Z, T, V, W 1200/ 800 32 m/s Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 11 FMI tasks 1991-2006 The task schedule consists of 3 subtasks, repeated every 5 minutes during campaigns Task Main purpose Rang e/km Elevations /deg Mod e Moments PRF/H z Max wind VOL_A Good dBZ 250 0.3 0.8 1.7 2.7 PPP Z, T, V 570 7m/s VOL_B Middle part 120 4 5.5 8 PPP As above 13 25 PPP VOL_C Upper air Ilmatieteen laitos / PowerPoint ohjeistus 80 22 m/s 850/567 Hz As above 1200/80 0 32 m/s 17.7.2015 12 Hydrometeor classification is not possible with dBZ only -20 -10 DBZ rain hail snow sleet insects birds clutter ZDR -5 rain hail snow sleet insects birds clutter 0 10 20 30 40 50 60 Overlap of hail and heavy rain Overlap of snow and insects … 0 Ilmatieteen laitos / PowerPoint ohjeistus 1 3 5 RHO rain hail snow sleet insects birds clutter 0.2 0.4 0.8 0.9 0.95 0.99 1 Help from dual pol parameters 17.7.2015 13 Three ways to collect dual-pol data • Alternating H and V ”Old-fashioned mode” • Transmit H, receive H and V ”LDR mode” • Z,V and LDR Linear Depolarization Ratio • More sensitivity • Transmit H and V, receive H and V ”Star mode” • Z, V and ZDR, Rho, KdP, PhiDP • ZDR - Differential Reflectivity • Rho - Correlation Coefficient • PhiDP - Differential Phase • KDP - Specific Differential Phase Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 14 ZDR=10Log(Zh/Zv) V %Zv ZDR < 0 ZDR > 0 ZDR > 0 ZDR > 0 %Zh ZDR > 0 ZDR=0 H courtesy of Timo Puhakka, HU Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 15 ZDR=10Log(Zh/Zv) • • • • • • • • • • generally, for hydrometeors ZDR -3..+3 dB (ratio 1:2) Increases with the sizes of liquid drops Small with dry snow Positive with horizontally oriented plate-crystals Negative with vertically oriented ”needles” Small or negative with hail Indicates presence of frozen precipitation Indicates super cooled water in updrafts Indicates the onset of melting With Zh can detect hail Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 16 ZDR in showers, sea clutter and birds Non-met Weather Non-met Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 17 Correlation coefficient rhv V V H H Correlation coefficient = 1 for spheres and oriented spheroids courtesy of Timo Puhakka, HU Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 18 Decrease of correlation Rho indicates • Variety of hydrometeor types • Mixture of liquid and frozen hydrometeors (”Snöblandat regn”) • Hydrometeors with irregular shape • Wide distribution of hydrometeor orientation • Presence of large hail • Correlation coefficient <0.95 for hail, hail/rain mixture and for wet aggregates courtesy of Timo Puhakka, HU Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 19 RHO sea clutter and birds: pink > 0.94 precipitation Interference Birds Sea clutter Anaprop Showers Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 20 RHO in elevation 7 deg - melting layer 0.94-0.99 Ice and snow Melting snow Water Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 21 Linear Depolarization Ratio LDR LDR vh 10 Log ( s hv Shv=0 Shv=0 2 / s hh 2 ) Shv > 0 LDR LDR LDR courtesy of Timo Puhakka, HU Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 22 Linear Depolarization Ratio LDR • Dry snow LDR<-30 dB • Rain LDR<-27 dB • Dry aggregates, small hail,graupel LDR<-20 dB • Wet aggregates, small hail,graupel -20<LDR<-10 dB • Hail, rain/hail mixture LDR>-20 dB courtesy of Timo Puhakka, HU Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 23 High resolution RHI’s of melting layer dBZ, Rho, Ilmatieteen laitos / PowerPoint ohjeistus LDR 17.7.2015 24 PhiDP The anisotropy of the medium leads to phase difference between horizontal and vertical waves (when horizontal waves go through more water) The detection of this phase difference is the basis for PhiDP. More often, range derivative of PhiDP known as KDP, is used. • courtesy of Timo Puhakka, HU Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 25 Kdp example • Attenuation ! Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 26 Attenuation visible in ZDR • horizontal waves more attenuated Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 27 Datasets are huge - Recommended procedure • Select situation from Weather Diary • Browse ready-made images • Select and limit the dataset you want • Read readme.files • Get data • Process • Make conclusions • For reporting, consider whether you want to use ready-made images or draw your own Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 28 Lake effect snow last Tuesday evening Ilmatieteen laitos / PowerPoint ohjeistus 17.7.2015 29