Transcript Slide 1
Molecular mechanisms of resistance to anti EGFR based therapies in colorectal cancer Alberto Bardelli Institute for Cancer Research and Treatment University of Torino - Medical School DISCLOSURES Founder: Horizon Discovery (Cambridge, UK) Consultant: Merck-Serono, Amgen Mutations and the cancer genome Mutations and resistance to therapies in CRCs Parallel clinical trials in cells, mice and patients “Cancer is, in essence, a genetic disease. Although cancer is complex, and environmental and other nongenetic factors clearly play a role in many stages of the neoplastic process, the tremendous progress made in understanding tumorigenesis in large part is owing to the discovery of the genes, that when mutated, lead to cancer.” Bert Vogelstein (1988) NEJM 1988; 319:525532. Cancer: a genetic disease DNA IS DIGITAL Tumour Normal Mutation Tyrosine kinome mutations Residue is evolutionarily conserved Mutations of equivalent residues in other kinases are pathogenic Bardelli et. Al., Science: 300;949 (2003) Mutational lansdscapes of cancer genomes PIK3CA TP53 PIK3CA TP53 APC KRAS Wood et al., Science : 318 (2007) The genetic bases of response and resistance to EGFR therapies APC/-catenin K-RAS APC/-catenin Normal Epithelium Normal Epithelium Dysplastic ACF Early Adenoma p53 18q Dysplastic ACF K-RAS 18q Early Intermediate Late Adenoma Adenoma Adenoma Other Changes? Other p53 Changes? Carcinoma Metastasis Intermediate Adenoma BRAF Late Adenoma Carcinoma PIK3CA Metastasis Parallel clinical trials in cells, mice and patients Mutation X Drug Y EGFR-targeted therapies in CRCs Anti-HER1/EGFRblocking antibodies 1 Anti-ligandblocking Antibodies 2 TK Inhibitors 3 Ligand– toxin Antibody– Conjugates toxin 4 Conjugates 5 Noonberg SB, Benz CC. Drugs 2000;59:753–67 Who will benefit from treatment with antibodies targeting EGFR in mCRCs ? Responders (15-20%) Non-Responders Bardelli and Siena, J Clin Oncol 2010 Cetuximab Panitumumab EGFR Mutations EGFR EGFR Protein expression (IHC) EGFR Gene Copy Number Ras SOS Grb2 Shc Raf PI3K MEK p85 PTEN DUSPs MAPK PDK AKT S6K Moroni et al Lancet Oncology 2005 GSK mCRC patients treated with panitumumab or cetuximab, N=114 *P<0.05 (P=.011) Mutated KRAS 34/113 (30%) Wild-Type KRAS 79/113 (70%) Responders 2/34 (6%)* 22/79 (28%)* Non Responders 32/34 (94%)* 57/79 (72%)* BRAF mutational status on Wild-Type KRAS tumors (N=79) **P<0.05 (P=.029) Mutated BRAF 11/79 (14%) Wild-Type BRAF 68/79 (86%) Responders 0/11 (0%)** 22/68 (32%)** Non Responders 11/11 (100%)** 46/68 (68%)** Benvenuti et al., Cancer Research. 2007 Di Nicolantonio et al., J Clin Oncol. 2008 Responder (15%) KRAS-NRAS mutated (35-45%) KRAS/PIK3CA mutated BRAF/PIK3CA mutated BRAF mutated (8%) 20-25% ??? PIK3CA mutated and/or PTEN loss (15-20%) Bardelli and Siena, J Clin Oncol 2010 Sartore-Bianchi A et al., PLOS One 21010 Siena; Di Nicolantonio and Bardelli JNCI 2009 KRAS, NRAS, or BRAF mutations are non overlapping, while PIK3CA mutations may occur concomitantly with any of the above Janakiraman M et al., Cancer Res; 70(14) July 15, 2010 From gene targeted therapies to mutant targeted therapies • Example 1: PIK3CA mutations • Example 2: KRAS mutations PIK3CA mutations and resistance to anti EGFR MoAbs ? • Sartore-Bianchi A et al., Cancer Res 2009 • Prenen et al., Clin Cancer Res 2009 YES NO Different role for individual PIK3CA mutations on the response to EGFR MoAbs in mCRCs Zhao and Vogt PNAS 2008 Effects of KRAS, BRAF, NRAS and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal Sample characteristics Total number of samples successfully assessed 969/1000 (97%) Type of tissue sample Primary tumor 790/969 (81.5%) Metastasis 118/969 (12.2%) Missing 61/969 (6.3%) Total number of chemotherapy-refractory tumors 717/969 (74%) Treatment type in chemotherapy-refractory tumors Panitumumab monotherapy Cetuximab monotherapy Cetuximab + chemotherapy 16/717 (2.2%) 43/717 (6%) 658/717 (91.8%) De Roock et al., EU Consortium Lancet Oncology, 2010 Multivariate Cox regression analysis of overall survival in the unselected and KRAS wild-type population Unselected population KRAS wild-type population Genotype Adjusted hazard ratio OS (95% CI) KRAS (mutant vs. wild-type) 1.87 (1.51-2.31) <0.0001 NC NC PIK3CA exon 9 (mutant vs. wild-type) 1.08 (0.77-1.51) 0.67 1.27 (0.75-2.14) 0.39 PIK3CA exon 20 (mutant vs. wild-type) BRAF (mutant vs. wild-type) 1.57 (0.90-2.76) 0.14 3.69 (1.69-8.02) 0.0055 2.68 (1.70-4.22) 0.00016 2.97 (1.88-4.70) <0.0001 NRAS (mutant vs. wild-type) 1.81 (1.00-3.26) 0.069 1.96 (1.08-3.55) 0.042 LRT p-value Adjusted hazard ratio OS (95% CI) LRT p-value De Roock et al., EU Consortium Lancet Oncology, 2010 From gene targeted therapies to mutant targeted therapies • Example 1: PIK3CA mutations • Example 2: KRAS mutations mCRC patients N=114 *P<0.05 (P=.011) Mutated KRAS 34/113 (30%) Wild-Type KRAS 79/113 (70%) Responders 2/34 (6%)* 22/79 (28%)* Non Responders 32/34 (94%)* 57/79 (72%)* Cancer Res 2007;67(6):2643–8 & J Clin Oncol. 2008; 26:5705-5712. KRAS mutations: clinical results from cetuximab treated mCRC Moroni Lancet Oncol 2005 n=31 Response rate: analysis of 8 studies available in PubMed or from ASCO Lièvre Clin Cancer Res 2006 n=30 Di Fiore Br J Cancer 2007 n=59 Frattini Br J Cancer 2007 n=27 Benvenuti Cancer Res 2007 n=48 Khambata-Ford J Clin Oncol 2007 n=80 De Roock ASCO Proc 2007 n=37 Finocchiaro ASCO Proc 2007 n=81 RAS mutated (7.0%) RAS mutated (43.9%) 1 1 wt (93.0%) Responders (n=82) 2 wt (56.1%) Non-Responders (n=312) 2 KRAS mutations Smith G, et al., British Journal of Cancer (2010), 1 –11 GEP GDP GDI GDP GTP GTP RAS RAS (inactive) (active) Farnesyl Geranylgeranyl Pi GAP Effectors: RAF/MAPK/ERK PI3K/AKT Meta-analysis of 3 Chemotherapy Refractory Datasets • NCIC CTG dataset – from CO.17 trial • Leuven dataset – from clinical trials: EVEREST, BOND, SALVAGE, BABEL • Italian dataset: – from clinical trials mentioned above – from non-trial patients with advanced, irinotecanrefractory CRC considered suitable to receive an EGFR MAb KRAS Mutation Status and Therapy by Dataset Number of patients (%) Dataset NCIC CTG Leuven Italian 394 282 125 20 (5) 20 (7) 8 (6) Other mutation 144 (37) 102 (36) 24 (19) Wild-type 230 (58) 160 (57) 93 (74) 199 (50.5%) 33 (11.7%) 15 (12%) Panitumumab monotherapy 0 (0%) 0 (%) 23 (18.4%) Cetuximab + chemotherapy 0 (0%) 249 (88.3%) 87 (63.6%) 195 (49.5%) 0 (0%) 0 (0%) Kras results and treatment information available Kras mutation status G13D Treatment Cetuximab monotherapy No cetuximab or panitumumab Baseline Patient Characteristics by Tumour KRAS status Age – median (range) in year <65 ≥65 Missing Gender Female Male ECOG performance status 0 1 2 Missing Site of primary Rectum only Colon Missing Number of prior chemotherapy regimens 0 1 2 3 4 ≥5 Missing Treatment Mono Cetuximab Mono panitumumab Cetuximab + chemotherapy No cetuximab or panitumumab G13D Mutation (N = 48) 65.5 (39.4-80.0) 23 ( 47.9) 25 ( 52.1) 0 ( 0.0) 22 ( 45.8) 26 ( 54.2) 12 ( 25.0) 26 ( 54.2) 7 ( 14.6) 3 ( 6.3) 10 ( 20.8) 38 ( 79.2) 0 ( 0.0) 0 ( 0.0) 5 ( 10.4) 13 ( 27.1) 16 ( 33.3) 10 ( 20.8) 4 ( 8.3) 0 ( 0.0) 10 ( 20.8) 3 ( 6.3) 22 ( 45.8) 13 ( 27.1) Other mutations (N = 270) 62.0 (34.0- 89.0) 157 ( 58.1) 113 ( 41.9) 0 ( 0.0) 109 ( 40.4) 161 ( 59.6) 54 ( 20.0) 166 ( 61.5) 30 ( 11.1) 20 ( 7.4) 57 ( 21.1) 213 ( 78.9) 0 ( 0.0) 3 ( 1.1) 17 ( 6.3) 74 ( 27.4) 93 ( 34.4) 56 ( 20.7) 25 ( 9.3) 2 ( 0.7) 91 ( 33.7) 5 ( 1.9) 105 ( 38.9) 69 ( 25.6) Wild type KRAS p-value* (N = 483) 62.0 (26.0- 85.9) .79 287 ( 59.4) 192 ( 39.8) 4 ( 0.8) 161 ( 33.3) .06 322 ( 66.7) 118 ( 24.4) .45 264 ( 54.7) 48 ( 9.9) 53 ( 11.0) 116 ( 24.0) .61 366 ( 75.8) 1 ( 0.2) 8 ( 1.7) .80 25 ( 5.2) 156 ( 32.3) 151 ( 31.3) 87 ( 18.0) 47 ( 9.7) 9 ( 1.9) 146 ( 30.2) .34 15 ( 3.1) 209 ( 43.3) 113 ( 23.4) * between biomarker positive and negative groups from chi-square test for categorical variables and t-test for continuous variables. KRAS G13D Mutation status as a prognostic factor for OS in patients not treated with Cetuximab or Panitumumab? Proportion alive 100 80 60 KRAS subset Median OS (months) Wild-type 4.5 G13D mutation 3.6 Other Mutation 4.7 40 20 0 0.0 5.0 10.0 Time from randomization (months) De Roock et al JAMA 2010 15.0 OS Predictive Analysis by KRAS status: EGFR Mab Monotherapy vs no EGFR Mab KRAS G13D Mutation Other KRAS Mutation 80 60 40 HR 0.23 (0.09 to 0.61) p=0.002 20 100 HR 0.98 (0.70 to 1.38) p=0.91 80 60 40 Proportion alive Proportion alive 100 Proportion alive KRAS Wild-type 100 20 0.0 5.0 10.0 15.0 Time from randomization (months) 60 40 20 0 0 HR 0.56 (0.42 to 0.73) p<0.0001 80 0 0.0 5.0 10.0 15.0 Time from randomization (months) 20.0 0.0 5.0 15.0 Time from randomization (months) Monotherapy with cetuximab or panitumumab No Treatment with cetuximab or panitumumab De Roock et al JAMA 2010 10.0 20.0 Molecular bases of G12V versus G13D mediated resistance to cetuximab in cellular and animal models Parallel clinical trials in cells, mice and patients Mutation X Drug Y Isogenic models of tumour progression Knock-out of cancer genes wt A p53 -/- Knock-in of oncogenic mutations Ras / Raf PI3K EGFR Homologous recombination B A B Isogenic cells carrying cancer mutations Mutation-specific pharmacogenomic profiles Parental cell line Knock-in cell line Drug screening Incubate cells with drugs Mutated genotype selective drug Drug with no selectivity Di Nicolantonio; Arena et al., PNAS 2008 Wild genotype selective drug Di Nicolantonio et al., J Clin Invest, 2010 Experimental design Cellular model Gene targeting (Knock-in approach) KRAS: G12D, G12V, G12C, G12A, G12S, G12R, G13D BRAF: V600E, PIK3CA: E545K (exon 9), H1047R (exon 20) Biochemical validation (pathway activation) Measure drug response NotI A ITR G12V (G35>G/T) LoxP NotI P Neo LoxP ITR AAV-KRas-12V NotI ITR G13D (G38>G/A) NotI LoxP P Neo LoxP LoxP ITR AAV-KRas-13D Knock-in G12V Homologous recombination (or G12D / G12C) B KRAS WT CRC cells C SW48 KRAS WT SW48 KRAS G12V SW48 KRAS G13D Knock-in G13D KRAS G12V or G13D and chemotherapy in cellular models SW48 SW48 100 100 90 90 80 70 WT G13D G12V 60 50 40 % Control % Control 80 70 50 40 30 30 20 20 10 10 0 0,01 0,1 1 10 Irinotecan µM De Roock et al JAMA 2010 100 WT G13D G12V 60 0 0,01 0,1 1 Oxaliplatin µM 10 100 KRAS G12V and G13D and ceruximab in cellular models SW48 100 % Control 90 WT 80 KRAS G13D KRAS G12V 70 KRAS G12D 60 KRAS G12C 50 40 0.01 0.1 1 Cetuximab µg/ml De Roock et al JAMA 2010 10 100 Cetuximab delays growth of SW48 tumor xenografts SALINE CETUXIMAB 2000 3 Tumor volume (mm) 2500 1500 1000 500 0 0 5 De Roock et al JAMA 2010 10 15 20 Days 25 30 35 Cetuximab does not affect growth of G12V tumors, but inhibits the growth of G13D tumor xenografts SW48 KRAS G12V SW48 KRAS G13D 2500 2000 2000 3 Tumor volume (mm) 3 Tumor volume (mm) 2500 1500 Start of treatment 1000 500 0 1500 Start of treatment 1000 500 0 0 10 20 30 40 50 0 10 Days SALINE De Roock et al JAMA 2010 CETUXIMAB 20 30 Days 40 50 Secondary resistance to targeted therapies Responders (15-20%) Non-Responders 2007 Secondary resistance to targeted therapies Responders (15-20%) Non-Responders 2010 Parallel clinical trials in cells, mice and patients Mutation X Drug Y DNA, RNA and protein extraction, FFPE blocks stored by the pathologist DNA, RNA and protein extraction, FFPE blocks stored by the pathologist Liver Met implanted s.c. in NOD SCID mice Marker A Drug X Marker B Drug Y Patient undergoing liver metastasectomy of CRC Using this approach 112 samples were succesfully engrafted since Oct 2008 A. Bertotti & L. Trusolino, Molecular Oncology, IRCC Expansion Xenopatients NUMBER OF SAMPLES 148 SURGERY >90% p0 engraftment from the pathologist FFPE blocks DMSO RNA later DMSO RNA later (2 mice) Archive RNA extraction Genomic DNA extraction p1 expansion (6 mice) 44 p2 treatment (24 mice) DMSO RNA later Snap Frozen DMSO RNA later Snap Frozen FFPE blocks A. Bertotti & L. Trusolino, Molecular Oncology, IRCC In vivo – M016 4000 3500 Tumor Volume (mm3) 3000 Tumor M016 Cet 0.5mg x2/week Cet 0.25mg x2/week Cet 0.125mg/week Cet 0.5 mgx1/week CONTROL 2500 2000 3/4 1500 1000 500 1/2 0 7 14212835394246495356606367707477818488919598102105 109112116 Time (days) Understanding secondary resistance to cetuximab Time 0: Molecular analysis using multiple omics’ technologies (WP3) Time x: Molecular analysis using multiple omics’ technologies (WP3) control cetuximab Chronic treatment with cetuximab (0.5 mg/injection/2x/week) secondary resistance Xenopatient M026: development of resistance RESISTANCE- RESISTANCE RESISTANCE- RESISTANCE RESISTANCE- RESISTANCE RESISTANCE- RESISTANCE COLTHERES “Modelling and predicting resistance to molecular therapies in colorectal cancers” Executive Summary: COLTHERES is a consortium of EU-clinical centres and translational researchers who have received 6M Euros of core funding from the EU Framework-7 program to define and perform biomarker driven clinical trials to improve cancer therapy outcomes. This is a 4-year programme that will use comprehensively molecularly-annotated colon cancers as a ‘test-bed’ to define specific biomarkers of response or resistance to signalling pathway agents. This consortium is open to any Institution who wishes to determine which patients are most likely to respond to novel CRC therapies and perform rapid proof-of-concept clinical trials. Consortium Members Alberto Bardelli (University of Torino-IRCC): Cancer mutations and targeted therapies. Drug resistance mechanisms Sabine Tejpar (University Hospital Leuven): Clinical trials with molecularly targeted therapies Josep Tabernero (Hospital Vall d’Hebron): Clinical trials with molecularly targeted therapies Salvatore Siena (Ospedale Niguardia): Targeted clinical trials and patient drug resistance mechanisms Horizon Discovery: (Cambridge UK) Novel gene-targeting platform to create genetically-defined human cancer models + drug screening Agendia : (Amsterdam) Microarrays on clinical samples and diagnosis based on molecular profiles Rene Bernards: (NKI Amsterdam) Functional genomics, screens for drug-response modifying genes Manel Esteller: (Barcelona) Epigenomic profiling of clinical samples Michael Clague: (University of Liverpool) Global proteomic profiling in cancer models Mauro Delorenzi (Swiss Institute of Bioinformatics) Bioinformatics, statistical analysis Paul Crompton (ARTTIC Brussels) Administration and management The doctor’s perspective Royal Mail Stamp Issue 25 February 2003 The patient’s perspective "Here's my sequence..." Molecular Genetics Lab: Federica Di Nicolantonio Sabrina Arena Miriam Martini Emily Crowley Elisa Scala Carlotta Cancelliere Sebastijan Hobor Davide Zecchin Simona Lamba Michela Buscarino Milo Frattini Josep Tabernero Salvatore Siena Andrea Sartore Bianchi Marcello Gambacorta Livio Trusolino Andrea Bertotti