Transcript Document
Conductivity in Photo-Excited Insulators Probed by THz Time-Domain Spectroscopy Jie Shan(a), Feng Wang(b), Ernst Knoesel(c), Mischa Bonn(d) , and Tony F. Heinz(b) (a) (b) (c) (d) Case Western Reserve University Columbia University Rowan University University of Leiden/AMOFL Research supported by NSF Relevant Published Papers • • • • • E. Knoesel, M. Bonn, J. Shan, and T. F. Heinz, “Charge Transport and Carrier Dynamics in Liquids Probed by THz Time-Domain Spectroscopy,” Phys. Rev. Lett. 86, 340 (2001). E. Knoesel, M. Bonn, J. Shan, F. Wang, and T. F. Heinz, “Transient Conductivity of Solvated Electrons in Hexane Investigated with TimeDomain THz Spectroscopy,” J. Chem. Phys 121, 394 (2004). J. Shan, F. Wang, E. Knoesel, M. Bonn, and T. F. Heinz, “Measurement of the Frequency-Dependent Conductivity of Sapphire,” Phys. Rev. Lett. 90, 247401 (2003). F. Wang, J. Shan, E. Knoesel, M. Bonn, and T.F. Heinz, “Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy,” SPIE Proceedings (in press). E. Hendry, F. Wang, J. Shan, T. F. Heinz, and M. Bonn, “Electron Transport in TiO2 Probed by THz Time-Domain Spectroscopy,” Phys. Rev. B 69, 081101 (2004). Charge Transport in Insulators • Electrical breakdown • Optical breakdown laser micromachining • Basis of radiation detectors • Fundamentals of electrons and their transport Polaron = electron + virtual phonon cloud This study: prototype crystalline and amorphous material Sapphire (Al2O3), MgO: Liquid n-hexane (Bandgap 9-5 eV) (Ionization potential 8.6 eV) Difficulties in Probing Insulators - Very low intrinsic conductivity - Problems with contacts - Short carrier lifetime Optical pump/THz probe spectroscopy Also powerful technique for semiconductors, superconductors, … Probing Transient Conductivity by THz Time-Domain Spectroscopy Optical pump Sample E(t) Detector THz Probe E(t)X100 E Conductivity ( ) E Experimental Setup Ti:S Regen 1 KHz, 1 mJ 150 fs, 810 nm Emitter Sample Tripling UV: 270 nm 40 J Lock-in amplifier Detector - Charge Transport in Liquids eQuasi-free state 0 Energy (eV) eLocalized bound states -8.6 0 2 nm • Inject electrons with fs UV pulses • Probe with pulsed THz at a variable delay Distance THz E-field and Pump Induced Changes in n-Hexane -3 6x10 1.0 4 E(t) 0.5 2 0.0 0 -2 -0.5 E(t) [kV/cm] E(t) [kV/cm] E(t) -4 -1.0 0 1 2 3 4 5 6 7 Time [ps] • Measured THz waveform with and without uv pump radiation. • Delay time between UV-pump and THz-probe: = 67 ps. Knoesel et al. PRL 86, 340 (2001) Electronic Conductivity in n-Hexane [x 10-3] 2 e' ; e" Data Drude model 0 e" 1 2p e e 0 ig o p2 = nee2/(eom*) - Plasma frequency g0 - Scattering rate -1 e -2 (ne)quasi-free = 1013 - 1015 cm-3 0.4 0.6 0.8 n [THz] 1.0 1.2 go = (270 50 fs)-1 f = e/(m*go) =470 cm2V-1s-1 Comparison with Complementary Measurement Electron Mobility • THz TDS: f = e/(m*go) =470 cm2V-1s-1 go = (270 50 fs)-1 m*=m0 • Radiolysis studies1: X-ray, e- e- M+ hexane - - - - - - - - - • Two-state model of solvated electrons2,3 1N. current +++++++++ = 0.074 cm2V-1s-1 (average) time f = 30 - 300 cm2V-1s-1 Gee. Chem. Phys. 89 (1988) 3710; R. C. Munoz, J. Phys. Chem. 91 (1987) 4639 2Y. A. Berlin, J. Chem. Phys. 69 (1978) 2401; 3Mozumder, Chem. Phys. Lett. 233 (1995) 167. Dynamics of Quasi-Free Electrons - > Non-geminate 6 Fluence = 0.3J/cm2 Decay 360 ps 4 recombination mechanism 3 2 1 ½ fluence Decay > 1 ns 4 0 200 400 600 800 Delay time (ps) Electron trap binding energy Ea ~ 150 meV 3 e 0 [a. u.] Ea n ne [a.u.] 5 20 Arrhenius fit: - E /kT e a 3.20 3.30 3.40 1000/T [T in K] 3.50 Charge Transport in Sapphire e - - - - - Ec 8.9 eV h + + +++ EV • Important optical and electonic material • High quality samples available • Model ionic material with polaronic effects Polarons & Polaronic Charge Transport Electrons in crystal are dressed by interaction with optical phonons in strongly polar crystals . • New quasi-particle with m* > mband • Model widely studied Landau, Froehlich, Lee, Pines, Feynman • Specific predictions for transport properties of polarons, but verified only in a limited class of materials Electron Scattering Rate and Mobility in Sapphire at Room Temperature Drude Model fit: Scattering rate: Mobility: γ0 = ( 95 fs )-1 μe=e/(m*γ0)= 610 cm2/V-s (m* ≈ 0.27 m0) Relation between conductivity and dielectric function P J t J iP i i (e 1) / 4 Electron Scattering Rate and Mobility in Sapphire at Room Temperature Drude Model fit: Scattering rate: Mobility: γ0 = ( 95 fs )-1 μe=e/(m*γ0)= 610 cm2/V-s (m* ≈ 0.27 m0) Temperature Dependence of Scattering Rate in High Purity Sapphire Scattering Rate (THz) 20 μe= 610 cm2/V-s 15 10 μe= 30,000 cm2/V-s 5 0 0 100 200 Temperature (K) 300 Scattering Mechanism of Electrons in Sapphire • Acoustic phonon scattering • Optical phonon scattering (polaron theory) • Impurity scattering ~ T 3/ 2 ~ e LO kT g 0 (T ) g acoustic(T ) g optical (T ) g impurity A Closer Look at the Theory Temp. dependence gacoustic T3/2 a Known parameters Unknown parameters ed : deformation cii: elastic constant potential m*: effective mass LO: optical phonon gopticalb exp(-E/kT) frequency (c) Ue-p : electron-optical phonon coupling constant (c) m* : effective mass a. J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950) b. F.E. Low and D. Pines, Phys. Rev. 98, 414 (1955) c. M. Schubert, T.E. Tiwald and C.M. Herzinger, Phys. Rev. B. 61(12), 8187 (2000) Temperature Dependence of Scattering Rate in High Purity Sapphire Scattering Rate (THz) 20 m* = 0.3 m0 edef = 19 eV 15 LO-phonon ~e LO kT 10 Acoustic phonon 3/ 2 scattering ~ T 5 0 0 100 200 Temperature (K) 300 Impurity Scattering in Sapphire g 0 (T ) g acoustic(T ) g optical (T ) g impurity Scattering Rate (THz) 20 15 10 5 Ionic impurities High purity 0 0 100 200 Temperature (K) 300 Interpretations Based on Various Polaron Models Model Electron band mass (m0 ) Effective mass (polaron) (m0 ) Deformation potential (eV) Pines & Low1 0.25 0.30 19 Garcia-Moliner2 0.38 0.48 14 Osaca3 0.65 0.92 8.3 Numerical simulations • Electron band mass4: 0.3 - 0.4 m0 • Deformation potential5: 19 - 20 eV 1. 2. 3. 4. 5. F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955). F. Garcia-Moliner, Phys. Rev. 130, 2290 (1963). Y. Osaca, Progr. Theoret. Phys. 25, 517 (1961). Y. N Xu and W.Y. Ching, Phys. Rev. B 43, 4461 (1991). J. C. Boettger, Phys. Rev. B 55, 750 (1997). Fluence Dependence of Carrier Lifetime in n-Hexane 6 Fluence = 0.3J/cm2 Decay 360 ps ne [a.u.] 5 4 3 ½ fluence Decay > 1 ns 2 1 0 0 200 400 600 Delay time (ps) 800 Non-geminate recombination Fluence Dependence of Carrier Lifetime in Sapphire Signal (a.u.) 1.0 Fluence (mJ/cm2) 0.1 0.2 0.3 0.4 0.5 0.5 0.0 -20 0 20 Time (ps) 40 60 Carrier Lifetime in Sapphire Observations: • Large deviation from sample to sample (sensitive to impurities, defects) • Temperature dependence of carrier lifetime deviates from sample to sample Sapphire window High purity sapphire wafer T=294K =190 ps 0.4 nf (a.u.) n f (a.u.) 0.8 T = 294 K 6 = 22 ps 4 2 0.0 0 0 60 120 Delay (ps) 180 0 30 60 delay (ps) 90 Summary • THz Time-Domain Spectroscopy: Measure complex conductivity over broad far-IR spectral range • THz probing of electronic charge transport: + Determine basic transport parameters: carrier density, scattering rate + Doesn’t require contacts • . . . Together with ultrafast excitation + Access nonequilibrium systems and their dynamics + Probe materials without intrinsic conductivity, short-lived carriers • Investigated charge transport in model non-polar liquids (hexane) and model wide-gap insulators (sapphire) Demonstrated high carrier mobilities Determined carrier lifetimes and trapping mechanisms Analyzed scattering mechanism from T-dependent conductivity