Transcript Document
A Panoply of Pericyclic Processes Lecture Notes Key Reviews: Ene Reaction H. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1969, 8, 556. W. Oppolzer, Angew. Chem. Int. Ed. Engl. 1978, 17, 476. J. M. Conia, Synthesis 1975, 1. [2+2]-Cycloadditions Org. React. 1993, 44, 297. W. Dermuth, Synthesis 1989, 152. Cyclopropanation H. E. Simmons, Org. React. 1973, 20, 1. S. Burke, P. A. Grieco, Org. React. 1979, 26, 361. Pauson-Khand Reaction W. Pauson, Tetrahedron 1978, 41, 5855. Ene Reactions: Background and Key Principles H + ene H Y X Y X eneophile Q u ic k T im e ™ a n d a Ph o t o - J PE G d ec om pr es so r a r e n e e d e d t o s e e t h is p ic t u r e . O + H Ph O O O Ene reaction O Ph O This reaction is often referred to as the Alder ene reaction, particularly in older (pre-1980s) literature Kurt Alder (1902-1958) K. Alder and co-workers, Chem. Ber. 1943, 76, 27. Ene Reactions: Background and Key Principles H + ene Y X H Y X eneophile This reaction is formally classified as a [4+2] cyclization. (Ene = HOMO, Eneophile = LUMO) However, ene reactions typically require much higher temperatures than the DielsAlder reaction to initiate, especially for intermolecular ene reactions as they have a high negative entropy of activation K. Alder and co-workers, Chem. Ber. 1943, 76, 27. Ene Reactions: Background and Key Principles H ene H Y X + Y X eneophile This reaction is formally classified as a [4+2] cyclization. (Ene = HOMO, Eneophile = LUMO) However, ene reactions typically require much higher temperatures than the DielsAlder reaction to initiate, especially for intermolecular ene reactions as they have a high negative entropy of activation O N R3 S Typical enophiles R1 Hetero ene reactions Z R2 R1 Z R2 + H X Y R1 R2 Z H R3 R4 R1 R2 X Y Z = O, N not S K. Alder and co-workers, Chem. Ber. 1943, 76, 27. Ene Reactions in Total Synthesis: Ene/Retro-Ene Sequence to Protect Indole O H CO2Me NAc + N H Me Me O N N CH2Cl2, 0 °C, 1 min MeN O NH N NAc N H NMe O MTAD 150 °C, 1 min N O H CO2Me Me Me N N NMe O MTAD = N-methyltriazolinedione P. S. Baran, C. A. Guerrero, E. J. Corey, J. Am. Chem. Soc. 2003, 125, 5628. P. S. Baran, C. A. Guerrero, E. J. Corey, Org. Lett. 2003, 5, 1999. Ene Reactions in Total Synthesis: Ene/Retro-Ene Sequence to Protect Indole O H CO2Me O NAc + N H Me Me Me Me O H N N H Me Me MTAD, CH2Cl2, 0 °C, 1 h; H O MeN NH N O 1O 2 (O2, methylene blue) Ene reaction 150 °C, 1 min NAc N N Me O Me H O MeN NH H N O N O H CO2Me N H NMe O MTAD N H N N N CH2Cl2, 0 °C, 1 min Me Me N Me Me H O NMe O MTAD = N-methyltriazolinedione OH N N N 110 °C, 30 min (70% overall based on r.s.m.) Retro Ene reaction N Me Me H O H OH N N N H Me Me okaramine N P. S. Baran, C. A. Guerrero, E. J. Corey, J. Am. Chem. Soc. 2003, 125, 5628. P. S. Baran, C. A. Guerrero, E. J. Corey, Org. Lett. 2003, 5, 1999. H O Ene Reactions in Total Synthesis: Double Ene Sequence O Ph HN O CH3CN, 25 °C H + N H O Me Aza-ene reaction O Ph HN Me Imineenamine tautomerization O O Ph Me HN N NH Intramolecular (56-75%) cyclization O Ph HN J.-H. Zhang and co-workers, Tetrahedron Lett. 1998, 39, 9237. N Me OH Ene Reactions in Total Synthesis: Double Ene Sequence O Ph HN O CH3CN, 25 °C H + N H O Me Aza-ene reaction O Ph Me HN Imineenamine tautomerization O O Ph Me HN N NH Intramolecular (56-75%) cyclization Ar O O -[ArCOOH] Me HO N N Me OH imidazo[1,2,3-ij][1,8] naphthyridine (70%) O Me HO N N Me OH Me Ph CH3CN, H2O, 25 °C [repetition of sequence above] J.-H. Zhang and co-workers, Tetrahedron Lett. 1998, 39, 9237. HN N Me OH Ene Reactions in Total Synthesis: Tandem Oxy-Cope/Carbonyl Ene Sequence H Me H H OH Me Me HO OTBDPS OH Me DBU, toluene 220 °C Oxy-Cope OTBDPS rearrangement Me Me Enol-Keto tautoOTBDPS merization O H Me H OTBDPS TBDPS = t-butyldiphenylsilyl TBDPSO H H H H L. Barriault, D. H. Deon, Org. Lett. 2001, 3, 1925. O Me Ene Reactions in Total Synthesis: Tandem Oxy-Cope/Carbonyl Ene Sequence H Me H H OH Me HO OTBDPS OH Me Me Me DBU, toluene 220 °C Oxy-Cope OTBDPS rearrangement Me Enol-Keto tautoOTBDPS merization O H Me H OTBDPS TBDPS = t-butyldiphenylsilyl H Me O HO HO Me Me O arteannuin M H Me H OTBDPS Transannular ene reaction OH Me HO (63%) OTBDPS L. Barriault, D. H. Deon, Org. Lett. 2001, 3, 1925. TBDPSO H H H H O Me Ene Reactions in Total Synthesis: A Carbonyl Ene Reaction (Oxidative Prins Cyclization) PCC, CH2Cl2 OH Carbonyl ene reaction H H H O OH PCC, (67%) CH2Cl2 Acid-catalyzed reactions of aldehydes with alkenes are known collectively as Prins reactions. When they are conducted in the absence of water, a carbonyl ene reaction takes place. O isocycloseychellene S. C. Welch and co-workers, J. Org. Chem. 1985, 50, 2668. Oxy-Ene Reactions: Also Known as Conia Reactions Me O Me 350-370 °C 30 min OH Me Conia reaction O Me Epimerized to the more stable trans isomer J. M. Conia and co-workers, Bull. Chim. Soc. Fr. 1969, 818. J. M. Conia and co-workers, Tetrahedron Lett. 1974, 2931. Me O Me Oxy-Ene Reactions: Also Known as Conia Reactions Me Me 350-370 °C 30 min O Me OH Me O Conia reaction O Me Epimerized to the more stable trans isomer Me Me O Me 350-370 °C 30 min Me Me Me O OH Conia reaction Me J. M. Conia and co-workers, Bull. Chim. Soc. Fr. 1969, 818. J. M. Conia and co-workers, Tetrahedron Lett. 1974, 2931. Me Oxy-Ene Reactions: Also Known as Conia Reactions Me Me 350-370 °C 30 min O Me OH Me O Conia reaction O Me Epimerized to the more stable trans isomer Me Me O Me 350-370 °C Me Me O Me Me O OH Conia reaction 30 min Me 335 °C 60 h Conia reaction O Me Me Me O (50%) Conia reaction H J. M. Conia and co-workers, Bull. Chim. Soc. Fr. 1969, 818. J. M. Conia and co-workers, Tetrahedron Lett. 1974, 2931. Me Oxy-Ene Reactions: Metal-Catalyzed Conia-Type Reactions O PAr2 Pd(OTf)2 PAr2 (10 mol %) O O O R1 O OR2 O Yb(OTf)3 (20 mol %) Conia reaction O R1 O OR2 HO O Me laurebiphenyl Me B. K. Corkey, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 17168. Ene Reactions in Total Synthesis: Asymmetric, Metal-Promoted Ene Reaction Me Me O H H O N N H Ph MgClO4, Ph Me CH2Cl2, 25 °C, 3 h (72%) O N (65% e.e.) R Metal-promoted R = COPh ene reaction EtO2C EtO2C Me O N R R = COPh First of 53 total syntheses of this compound that can produce gram quantities readily; only 6 steps and 20% yield overall Q. Xia, B. Ganem, Org. Lett. 2001, 3, 485. HO2C HO2C N H kainic acid Me Ene Reactions in Total Synthesis: Selenium Dioxide Oxidation Reactions CO2Me SeO2, t-BuOOH (38%) HO CO2Me O O mokupalide H Se O O Ene reaction O Se OH [2,3]-sigmatropic rearrangement O Se OH OH Nu F. W. Sum, L. Weiler, J. Am. Chem. Soc. 1979, 101, 4401. K. B. Sharpless and co-workers, J. Am. Chem. Soc. 1973, 95, 7917. Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples OEt OEt Me Me 1. LDA, MeI 2. MgBr O Me O Me OH Me HCl work-up (74% overall) Me Me Me [2+2] h cycloaddition (77%) O Me Me Ph3P CH2 Me DMSO, 70 °C (77%) Me M. C. Pirrung, J. Am. Chem. Soc. 1979, 101, 7130. M. C. Pirrung, J. Am. Chem. Soc. 1981, 103, 82. Me Me Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples OEt OEt Me Me 1. LDA, MeI 2. MgBr O O Me Me OH Me HCl work-up (74% overall) Me Me Me [2+2] h cycloaddition (77%) Me Me Me Me isocomene O p-TsOH, benzene, (98%) Can you rationalize a mechanism? Me Me Ph3P CH2 Me DMSO, 70 °C (77%) Me M. C. Pirrung, J. Am. Chem. Soc. 1979, 101, 7130. M. C. Pirrung, J. Am. Chem. Soc. 1981, 103, 82. Me Me Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples O Me Me sunlight Me H O O 1 year carvonecamphor carvone HO Me h H H H H O O Incredibly strained systems can be fashioned by [2+2] cycloadditions! Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples O O Br O H H h [2+2] cycloaddition Br O Br 50% aq. KOH (50% overall) Br P. E. Eaton, T. W. Cole, J. Am. Chem. Soc. 1964, 86, 962. P. E. Eaton, T. W. Cole, J. Am. Chem. Soc. 1964, 86, 3157. Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples O O Br O H H h Br O [2+2] cycloaddition (50% overall) Br O 50% aq. KOH Br O Br Br Note: The Favorskii rearrangement is an excellent way to achieve ring contraction on symmetrical substrates; on non-symmetrical compounds, two products will often result unless there is a distinct bond breaking preference. CO2H HO2C Favorskii rearrangement (30%) O O O O HO cubane P. E. Eaton, T. W. Cole, J. Am. Chem. Soc. 1964, 86, 962. P. E. Eaton, T. W. Cole, J. Am. Chem. Soc. 1964, 86, 3157. OH Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples Me O MgBr O Me Me Me Me CuI, THF O H2CO Me Tandem vicinal functionalization Me OH Me Me 1. TsCl 2. DBU Me Me Me panasinene O Me Me O Olefination h (reaction to be unveiled later) (67%) [2+2] cycloaddition Me Me Me Me C. R. Johnson and co-workers, J. Am. Chem. Soc. 1981, 103, 7667. Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples EtO O EtO O O LiAlH4 LDA Me Me I Me Me Me [2+2] cycloaddition O O O O Me H Me Me hibiscone C O O Me Me h O O3 H Me Me A. B. Smith and co-workers, J. Am. Chem. Soc. 1982, 104, 5568. H Me Photochemical [2+2] Reactions in Total Synthesis: Intramolecular Examples TBDPSO O O OH L-Proline O O DMSO Me N H OTBDPS (91%) H Me TBDPSO TBDPSO H O Me H OH kinetic product H thermodynamic O product Me H OH OH OBn O O O H H O OH O O Me H littoralisone 1. h 2. H2, Pd/C [2+2] OH cycloaddition (84%) OH O O O H O OBn OBn O Me H O OBn H Me H OAc I. K. Mangion, D. W. C. MacMillan, J. Am. Chem. Soc. 2005, 127, 3696. Photochemical [2+2] Reactions: Intermolecular Examples and Regiochemistry Intermolecular reactions typically lack regioselectivity . . . + h Et and Me E. J. Corey and co-workers, J. Am. Chem. Soc. 1964, 86, 5570. Me Et Photochemical [2+2] Reactions: Intermolecular Examples and Regiochemistry Intermolecular reactions typically lack regioselectivity . . . h + Et and Me Me Et unless strongly electron-withdrawing and/or donating substituents are involved O O + CO2Me H h CO2Me O Ground state reaction H O O MeO + OMe h O H H OMe OMe E. J. Corey and co-workers, J. Am. Chem. Soc. 1964, 86, 5570. Excited state reaction Photochemical [2+2] Reactions in Total Synthesis: An Inter-/Intramolecular Cascade O O MeO2C + h [2+2] cycloaddition H CO2Me Ph3P=CH2 Me H Wittig reaction H CO2Me Me H P. A. Wender and co-workers, Tetrahedron Lett. 1982, 23, 1871. Photochemical [2+2] Reactions in Total Synthesis: An Inter-/Intramolecular Cascade O O MeO2C + h [2+2] cycloaddition H CO2Me Ph3P=CH2 Me H Wittig reaction H CO2Me Me H Retro [2+2] 210 °C, cycloaddition 2 h CO2Me P. A. Wender and co-workers, Tetrahedron Lett. 1982, 23, 1871. Photochemical [2+2] Reactions in Total Synthesis: An Inter-/Intramolecular Cascade O O MeO2C + h [2+2] cycloaddition H CO2Me H CO2Me Ph3P=CH2 Me H Wittig reaction Me H Retro [2+2] 210 °C, cycloaddition 2 h OHC Me OH CHO Me CO2Me Ene reaction H CO2Me H Me Me warburganal H P. A. Wender and co-workers, Tetrahedron Lett. 1982, 23, 1871. Photochemical [2+2] Reactions in Total Synthesis: Intermolecular Examples N BzC N CBz Br Zn, AcOH N BzC N (80%) Br CBz + O h N BzC N MeCN (40%) [2+2] CBz O CO2H Hf = +19.6 kcal/mol pentacycloanemmoxic acid V. Mascitti, E. J. Corey, J. Am. Chem. Soc. 2004, 126, 15664. Photochemical [2+2] Reactions in Total Synthesis: Tethered Intramolecular Example for Ladderane Synthesis N OH MeO N HO N OH OMe HO N h in solid state (100%) Structure organized by a series of hydrogen bonds [2+2] cycloaddition cascade sequence Pyr Pyr Pyr Pyr X. Gao, T. Friscic, L. R. MacGillivray, Angew. Chem. Int. Ed. 2004, 43, 232. Photochemical [2+2] Reactions: The Paterno-Buchi Reaction Paterno (1909) Me + Me Me Me O sunlight Me Me Ph Me O Ph + O Me Me Ph Buchi (1954) Me O + Me Me n-Pr h Me O Me Me oxetane ring system n-Pr E. Paterno, Gazz. Chim. Ital. 1909, 39, 237. G. Buchi and co-workers, J. Am. Chem. Soc. 1954, 76, 4327. Photochemical [2+2] Reactions: The Paterno-Buchi Reaction Paterno (1909) Me + Me Me Me O sunlight Me Me Ph Me O Ph + O Me Me Ph Buchi (1954) Me O + Me Me Me h O Me Me n-Pr oxetane ring system n-Pr General features: -carbonyl can be either an aldehyde or ketone; alkene should be electron-rich -carbonyl substrate is energy absorbing -often highly regioselective due to radical-based mechanism for coupling Me Me O O Me Me n-Pr Me Me n-Pr E. Paterno, Gazz. Chim. Ital. 1909, 39, 237. G. Buchi and co-workers, J. Am. Chem. Soc. 1954, 76, 4327. Photochemical [2+2] Reactions: The Paterno-Buchi Reaction in Action Me h Me O Me (79%) Me Me Me O Me Me O Me Me Me H Me What pericyclic reaction was used to generate the starting material for this sequence? LDBB, THF, -78 to -10 °C, 35 h Li+ LDBB O Me Me H Me oxosilphipefol-6-ene Me PCC, DMF (84%) O Me HO Me Me (57%) Me H Me T. J. Reddy, V. H. Rawal, Org. Lett. 2000, 2, 2711. Me Me H Me Photochemical [2+2] Reactions: The Paterno-Buchi Reaction in Action H O Ph + C9H19 N CO2Me h (53%) [2+2] H2, Pd(OH)2/C O Ph C9H19 N CO2Me note the stereochemistry of this addition H HO (81%) Ph C9H19 N CO2Me LiAlH4, (91%) THF, HO HO HO C9H19 N Ph Me preussin N Ph C9H19 N Ph T. Bach, H. Brummerhop, Angew. Chem. Int. Ed. 1999, 37, 3400. C9H19 OH Photochemical [2+2] Reactions: The Paterno-Buchi Reaction in Action EtO2C + O H O H h (65%) [2+2] CO2Et O O EtSH, BF3•OEt2 H Why this ring closure regiochemistry? H OH CO2Et O (70%) O H H O H euplotin A H H O OH CO2Et OAc O R. A. Aungst, R. L. Funk, J. Am. Chem. Soc. 2001, 123, 9455. SEt Photochemical [2+2] Reactions: The Paterno-Buchi Reaction in Action C8H17 + O H O C8H17 H h (100%) [2+2] cycloaddition O O C8H17 H H2, Rh/Al2O3 O (97%) O H H 0.1 N HCl (96%) in THF Note: These photocycloadditions are all racemic events; rendering them asymmetric remains an unexplored frontier for synthetic methods development H O C8H17 H C8H17 OH O O H O avenaciolide OH O [putative aldol product] S. L. Schreiber, A. H. Hoveyda, J. Am. Chem. Soc. 1984, 106, 7200. For more on furans, see: Classics in Total Synthesis I, Chapter 20. The Simmons-Smith Cyclopropanation: A [2+2] Pericyclic Reaction Et2Zn + R5CHI2 -[EtI] R5 = H, Me, Ph Formally the addition of a carbene to an olefin EtZnCH2I R2 R3 R1 R4 EtZn R2 R1 CH2 R3 R4 -[EtZnI] R2 I CH2 R3 R1 R4 butterfly mechanism For a review, see: H. E. Simmons, Org. React. 1973, 20, 1. The Simmons-Smith Cyclopropanation: A [2+2] Pericyclic Reaction Et2Zn + R5CHI2 -[EtI] R5 = H, Me, Ph Formally the addition of a carbene to an olefin EtZnCH2I R2 R3 R1 R4 EtZn R2 R1 CH2 R3 R4 -[EtZnI] R2 I CH2 R3 R1 R4 butterfly mechanism Stereochemistry of starting alkene is preserved in the product If a fragment installs a group other than H on the new cyclopropane ring system (i.e. R5 = Me, Ph), it prefers to be syn to the substituents on the alkene For a review, see: H. E. Simmons, Org. React. 1973, 20, 1. The Simmons-Smith Cyclopropanation: Examples in Natural Product Total Synthesis Me Me O Me Me Me Zn-Cu, CH2I2, Et2O, O Me 35 °C, 6 h (60%) Double-directed Simmons-Smith Cyclopropanation O O Me H Me H H H 3 steps Me O S H N MeO Me H H HO Me H curacin A S. Iwasaki and co-workers, Tetrahedron Lett. 1996, 37, 4397. H The Simmons-Smith Cyclopropanation: Examples in Natural Product Total Synthesis Me Me O Me Me Me Zn-Cu, CH2I2, Et2O, O Me O 35 °C, 6 h (60%) Double-directed Simmons-Smith Cyclopropanation O Me H Me H H Can you guess the transformations? H 3 steps Me O S H N MeO Me H H HO Me H curacin A S. Iwasaki and co-workers, Tetrahedron Lett. 1996, 37, 4397. H The Simmons-Smith Cyclopropanation: Examples in Natural Product Total Synthesis O H Me O TBDPSO H H O Me made from a Claisen rearrangement O HH CH2I2, Et2Zn benzene (92%) Simmons-Smith TBDPSO cyclopropanation O H H O H H O Me H Me O H OAc Me acetoxycrenulide L. A. Paquette and co-workers, J. Am. Chem. Soc. 1995, 117, 1455. Me The Simmons-Smith Cyclopropanation: Examples in Natural Product Total Synthesis O Me Me O Me MeCN, (66%) Intramolecular Diels-Alder reaction SimmonsSmith cyclopropanation (92%) O O H Me Me trans-dihydroconfertifolin Me H2, PtO2 AcOH (99%) O H Me CH2I2 (16 equiv), Et2Zn (8 equiv), toluene, 25 °C, 6 h Me O O H Me D. F. Taber and co-workers, J. Org. Chem. 2002, 67, 4501. O The Simmons-Smith Cyclopropanation: Examples in Natural Product Total Synthesis O O Me2N Me OH O Me Me Me CH3CHI2, Et2Zn, CH2Cl2/DME, -10 °C Asymmetric Simmons-Smith cyclopropanation NMe2 O (86%) O (1.2 equiv) B Bu Me OH Best method for asymmetric cyclopropanation; requires stoichiometric ligand and works for allylic alcohols only O Me Me Me Me OH OH O CO2H Me O Me Me Me (+)-ambruticin Me P. Liu, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 10772. Cyclopropanation method: A. B. Charette, H. Juteau, J. Am. Chem. Soc. 1994, 116, 2651. Other Cyclopropanation Methods: The Reactions of Carbenes + CH2 CH2 > CHCl > CCl2 > CBr2 > CF2 For a review, see: W. Kirmse, Carbene Chemistry 1971, 313. Other Cyclopropanation Methods: The Reactions of Carbenes + CH2 CH2 > CHCl > CCl2 > CBr2 > CF2 OMe Cl KOtBu, CHCl3 Cl OMe [:CCl2] MeLi, CH2Cl2 N H [:CHCl] H Cl N H For a review, see: W. Kirmse, Carbene Chemistry 1971, 313. Other Cyclopropanation Methods: The Reactions of Carbenes + CH2 CH2 > CHCl > CCl2 > CBr2 > CF2 OMe Cl KOtBu, CHCl3 Cl OMe Cl [:CCl2] O MeLi, CH2Cl2 N H [:CHCl] H Cl N H For a review, see: W. Kirmse, Carbene Chemistry 1971, 313. N Other Cyclopropanation Methods: The Reactions of Carbenes O O Cl N2 CH2N2 Me Me O Cu, Me Me Me Me Carbene-based cyclopronation O Me Me For a review, see: S. Burke, P. A. Grieco, Org. React. 1979, 26, 361. Other Cyclopropanation Methods: The Reactions of Carbenes O O Cl O N2 CH2N2 Me Cu, Me Me Me Me Me Carbene-based cyclopronation O OLi Li/NH3 Regioselective enolate formation Me Me Me Me For a review, see: S. Burke, P. A. Grieco, Org. React. 1979, 26, 361. Other Cyclopropanation Methods: The Reactions of Carbenes O O Cl O N2 CH2N2 Me Cu, Me Me Me Me Me Carbene-based cyclopronation O O OLi Li/NH3 Regioselective enolate formation Me Me HCO2H H2O Me For a review, see: S. Burke, P. A. Grieco, Org. React. 1979, 26, 361. OH Me Other Cyclopropanation Methods: The Reactions of Carbenes O O Me O Me Cu, O Me O Me Carbene-based cyclopronation O Me Me O N2 O O 1. NaH, CO(OMe)2 2. NaBH4 O O H Me MeO2C P. Deslongshamps and co-workers, Can. J. Chem. 1980, 58, 2460. Me OH Other Cyclopropanation Methods: The Reactions of Carbenes O O Me O Me Cu, O Me O Me Carbene-based cyclopronation O Me Me O N2 O O O Me 1. NaH, CO(OMe)2 2. NaBH4 O O Me Me HO Me agarospirol H HCl, THF Me MeO2C Me O Me MeO2C P. Deslongshamps and co-workers, Can. J. Chem. 1980, 58, 2460. Me OH Other Cyclopropanation Methods: The Reactions of Carbenes O O CO2Et O CO2Et TsN3 N2 Diazo transfer C5H11 C5H11 Cu, CO2Et toluene Carbene-based cyclopronation C5H11 H Homoconjugate PhSH, addition KOtBu O O CO2Et CO2H C5H11 H OH prostaglandin A2 sulfoxide [2,3]-sigmatropic rearrangement employed in these steps C5H11 H SPh D. F. Taber and co-workers, J. Am. Chem. Soc. 1977, 99, 3513. The Pauson-Khand Reaction: A [2+2+1] Cycloaddition R1 R2 R5 R6 R3 R4 + terminal or internal alkyne transition metal complex (1 equiv), solvent, heat or transition metal complex (<1 equiv), promoter, solvent, CO atmosphere O R1 R6 R5 R R3 4 cyclopentenone R2 For a review, see: P. Schore, Chem. Rev. 1988, 88, 1081. The Pauson-Khand Reaction: A [2+2+1] Cycloaddition R1 R2 R5 R6 R3 R4 + terminal or internal alkyne > > transition metal complex (1 equiv), solvent, heat or transition metal complex (<1 equiv), promoter, solvent, CO atmosphere O R1 R6 R5 R R3 4 cyclopentenone R2 >> does not react For a review, see: P. Schore, Chem. Rev. 1988, 88, 1081. The Pauson-Khand Reaction: A [2+2+1] Cycloaddition R1 R2 R5 R6 R3 R4 + terminal or internal alkyne > > transition metal complex (1 equiv), solvent, heat or transition metal complex (<1 equiv), promoter, solvent, CO atmosphere O R1 R6 R5 R R3 4 cyclopentenone R2 >> does not react metal complexes: Co2(CO)8, Fe(CO5), Ru2(CO)12, Ni(COD)2, W(CO)6, Mo(Co)6 promoter: NMO, TMANO, RSCH3, h, "hard" Lewis bases Regioselectivity: Larger alkyne substituent ends up next to the ketone of the product; alkene selectivity is low in intermolecular reactions, high in intramolecular events. For a review, see: P. Schore, Chem. Rev. 1988, 88, 1081. The Pauson-Khand Reaction: Examples in Complex Molecule Synthesis Me O H Me H Me H Me carene H Me O Co2(CO)8, pet. ether Me 25 °C (100%) O (CO)6Co2 H Me H2C=CH2 (25 atm), TMANO, toluene, 40 °C, 24 h (81%) Me O •2H2O N Me Me TMANO H H Me Me taylorione Me H Me PausonKhand Reaction O O Me O H Me J. G. Donkervoort and co-workers, Tetrahedron 1996, 52, 7391. O H Me O Me The Pauson-Khand Reaction: Examples in Complex Molecule Synthesis Me Co2(CO)8, benzene OTBDPS OTBDPS Co2(CO)6 Co2(CO)6 (87%) OTBDPS Me Me TMANO (6 equiv), PausonCH2Cl2, -78 °C to 25 °C Khand (85%) Reaction HO HO Me H H H OH Me HO Me HO kalmanol H Me OH O MeO2C H Me O O TBSO Me MeH H L. A. Paquette and co-workers, J. Org. Chem. 1995, 60, 6912. H H OTBDPS The Pauson-Khand Reaction: Examples in Complex Molecule Synthesis Me H Me Me O H OEt 1. Co2(CO)8 2. EtAlCl, CH2Cl2 (83%) Nicholas reaction Me H Co(CO)3 Co(CO)3 Me Me H H O TMS NMO, CH2Cl2, 25 °C, 12 h (70%) PausonKhand Reaction O Me H Me H O H Me H H H H Me Me O H H epoxydictymene S. L. Schreiber and co-workers, J. Am. Chem. Soc. 1997, 119, 4353. Me Me The Pauson-Khand Reaction: Examples in Complex Molecule Synthesis Me OTBS Me OTBS Co2(CO)8, benzene Me OTHP OTBS (92%) (CO)6Co2 THPO THPO Co2(CO)6 NMO•H2O, CH2Cl2, THF (89%, 94% d.s.) Me OH Highly diastereoselective reaction; OTBS group occupies a pseudoequatorial position based on its bulk PausonKhand Reaction Me OTBS H N O H THPO 13-deoxyserratine S. Z. Zard and co-workers, Angew. Chem. Int. Ed. 2002, 41, 1783. O