Transcript Document
Nanophysics with Ion Beams Peter Lieb, University of Göttingen Lectures on 22.-27.04.09 @ VINCA Epitaxy and luminescence of ion-irradiated quartz Ion implantation in ferromagnetic layers Hyperfine interactions of implanted tracers using perturbed angular correlations EPITAXY & LUMINESCENCE AFTER ION IMPLANTATION IN -QUARTZ W.Bolse, S.Dhar, S.Gasiorek, J.Keinonen, K.P.Lieb, F.Roccaforte, P.K.Sahoo, T.Sajavaara University of Göttingen University of Helsinki Supported by DFG, DAAD & Academy of Finland Tetrahedrite & Quartz from Trepca, 10 km east of Kosozska-Mitrovica 1. Introduction 2. Epitaxy of quartz after ion irradiation 3. Luminescence and defects 4. New directions 1. Introduction Hexagonal latticeFirst structure Intel Builds Successful Photonic 3 silica: 2.35 g/cm3 Computer Density of quartz: 2.65 g/cm Processor, Uses Quartz Crystals September 2006 Melting point =18. 1710C @ normal pressure large = 8 eV! TheVery hybrid chipband used gap 36 lasers on one die that used 36 modulators and a multiplexor route and light UV beams with varying waveTransparent in theto visible lengths through optical fiber. Each laser is about 1 m wide and 800Introduce color compares centers by implantation m long, which to ion the width of a human hair of (impurity & intrinsic & nanoparticles) about 100 m. Down thedefects road, Intel aims to combine the platform with a data receiver chip to build an integrated silicon photonic chip. The chip, currently considered part of Intel's "TeraScale" program to build processors with "10-00s" of cores, then would be built into computer boards and serve as interconnect between busses, between PCs and networks. The actual performance capability of such devices are still to be seen, but Intel claims that 25 hybrid silicon lasers on a chip, would provide the aggregate band-width of 1 Terabit (25 x 40 Gb/s). Intel did not specify when such silicon laser chips would actually be available. However, with the claim that the "last major hurdle" is taken, Intel appears to be well on track to ... introduce the first photonic chips "by the end of the decade." www.tgdaily.com Copyright by TG Daily 10. April 2009 Collision cascade 175 keV Ba+ a-SiO2 (SRIM 2000) . 1 Ba+-ion Ba-range distribution mean range = 80 nm 10 ions Each ion produces its own collision cascade with regions of high and low damage density Cascades of individual ions are well separated in time Damage distribution peaks closer to surface than range distribution Harbsmeier & Bolse 1000 ions 0 Depth x (nm) 200 0 Depth x (nm) 200 Critical energy for amorphization is only 2 eV/at For low fluences: defect agglomeration & small amorphous zones embedded in crystalline matrix For high fluences: continuous amorphous layer Epitaxy of Quartz. Goal & Experiments Epitaxy of quartz after or during ion irradiation Dynamic Epitaxy Laser Epitaxy = Implantation into hot quartz = Epitaxy after ion implantation with pulsed excimer laser Chemical Epitaxy = Epitaxy after alkali ion irradiation and annealing in air or oxygen Our Goal Doping -quartz with photoactive elements via ion implantation. Can we achieve full epitaxy & high luminescence efficiency? Experiments Na & Rb ion implantation & RBS-channeling: Defects in SiO2, Rb profiles Elastic Recoil Detection Analysis (ERDA): Na profiles,16O 18O exchange Atomic Force Microscopy (AFM): Surface structure Cathodoluminescence (CL): Optical properties RBS-Channeling undamaged sample ? Angular scan virgin sample amorphous Channeling cannot distinguish !! polycrystalline textured Dynamic epitaxy Depth profiles: Time-of-flight ERDA Start/Stop Detector = Time marker Field-free reg. -2.2 kV C - 4.4 kV Electron mirror -6.6 kV Secondary electrons 5-50 MeV recoil atom Channel plate chevron pair Anode 0 V 500 ps 20 mV Busch et al., NIM 171 (1980) 71 TOF-ERDA: 2 time markers T1 and T2 measure flight time t & velocity v = L/t. Si detector measures recoil energy E = M2v2/2. Deduce M2 from E and v. TOF-ERDA is able to scan the full mass range of target isotopes in a single run. J. Jokinen, et al., NIM B 119 (1996) 533 2. Chemical epitaxy: Rb 2500 Counts 2000 virgin 18 virgin in O random virgin as implanted 16 O 1500 923 K 1023 K 1073 K 1098 K 1133 K (a) Rb-ions implanted (175 keV, 2.5x1016/cm2, 100 K). Annealed in 18O2-gas S. Gasiorek, et al, JAP 95 (2004) 1000 18 O 500 100 Si 400 500 600 700 800 Energy (keV) fV (%) 300 60 40 1.2 20 (b) 0.4 0.0 0 500 1000 1500 15 2000 2500 2 Depth (10 at./cm ) 0.06 as implanted 773 K 843 K 923 K 973 K a/c interface 0.04 0.02 (c) 0.00 0 500 1000 1500 15 2000 2 Depth (10 at./cm ) 2500 (a) Amorphous 0 Retained Rb fraction (%) as implanted 923 K 1023 K 1073 K 1098 K 1123 K 1133 K 0.8 Oxygen content (%) Normalized damage as-impl. 80 0 Rb concentration TX Rb fraction 100 TD 80 as-impl. 60 40 20 Retained (b) 0 Rb 100 16O 80 18 O fraction O fraction 18 O 16 20 18O (c) 16O 0 0 200 400 600 800 Temperature (K) 1000 1200 Chemical epitaxy: Fluence dependence Na: Fixed annealing temp. 1173 K; Rb: Fixed annealing temp. 1123 K; RBS Channeling Counts 3000 18 2000 virgin O2 random virgin 14 2 1.0x10 Na/cm 15 2 1.0x10 Na/cm 16 2 1.0x10 Na/cm 16 2 2.5x10 Na/cm 17 2 1.0x10 Na/cm 16 O 1000 Si 18 O 0 250 300 350 400 450 Energy (keV) 500 550 Energy (keV) Results: Thickness of damaged layer increases with ion fluence Need critical ion fluence to achieve epitaxy: 21016/cm2 Very little damage left in SiO2 after epitaxy Chemical epitaxy: Oxygen diffusion (Na) 50 40 923 K (a) 14 20 18O concentration profiles measured by means of TOF-ERDA for Na-doped -quartz annealed in 18O2 for 1 h at 923 K (a) and 1123 K (b). 10 40 The insert shows the total 18O content integrated up to the a/c interface for different fluences 40 1123 K (b) (c) O content (%) 0 30 18 O concentration (at.%) 30 18 2 1.0x10 /cm 15 2 1.0x10 /cm 16 2 1.0x10 /cm 16 2 5.0x10 /cm 17 2 1.0x10 /cm 20 30 20 10 0 923 K 1123 K 0 20 40 60 80 15 10 0 -50 100 2 Fluence (10 Na/cm ) 0 50 100 150 Depth (nm) 200 250 Oxygen exchange with 18O annealing gas is very effective: for 5x1016 alkali-ions/cm2, 15-30 % of the oxygen content in the a-SiO2 is replaced by 18O. Ge and Rb diffuse in amorphous zone ERDA & RBS. Chemicalenhanced epitaxy: Rb out-diffusion by double-ion presence of Geimplantation ERDA & RBS. For Ge-fluences 1015/cm2, full epitaxy of SiO2 layer; 75% of implanted Ge substitute Si in quartz matrix RBS-CGe/Rb . 3000 Si + Cs as impl. Si as impl. 1000 O Cs 2000 virgin 875 C 400 Si 1000 o 0 200 Virgin Random 16 2 10 Ge/cm (as-impl.) 16 2 10 Ge/cm (ann.) 16 2 Rb + 10 Ge/cm (as-impl.) 14 2 Rb + 10 Ge/cm (ann.) 15 2 Rb + 10 Ge/cm (ann.) 16 2 Rb + 10 Ge/cm (ann.) 3000 2000 600 800 Energy (keV) Counts Normalized Yield Si/Cs 4000 0 250 800 300 350 Ge 3000 Normalized Yield Xe/Cs 600 400 450 15 500 200 Rb + 10 Ge/cm (ann.) Channeled Ge Random 400 Xe + Cs as impl. Xe as impl. Rb 200 0 1000 600 Xe virgin 850 C 400 600 600 Energy (keV) 700 800 0 o 0 200 75% Ge on Si sites Rb 100 2000 550 2 800 700 800 Energy (keV) 900 1000 Ge nanocrystals XTEM picture of SiO2/Si bilayer irradiated with Ge ions and annealed TEM picture of Ge nanocrystals after Implantation in SiC J. M. J. Lopes, et al., Appl. Phys. Lett. 86 (2005) Chemical epitaxy after alkali implantation: Scenario SiO2 consists of fully connected SiO4 tetraeders: O3Si-O-SiO3 no topological freedom! Alkali ions are network modifiers, which are bound to O & weaken Si-O bond. Arnold + Mazzoldi, Marians + Hobbs Possible Scenario: O3Si–O†SiO3 + 2A + 18O O3Si–O–A + A–18O–SiO3 O3Si–18O–SiO3 + A2O Dynamic epitaxy (Ba, Ge) Counts (x100) 30 Ba(a) Random O 920 K 20 1020 K RT Ba (x10) 1095 K Si 120-keV Ba+ ions, fluence = 1 x 1015/cm2, sample temperature = 300 - 1170 K. The amorphized quartz layer stays damaged up to 1170 K near surface, thickness of the amorphous layer decreases for increasing sample temperature. S. Dhar, et al., J. Appl. Phys. 85 (1999) 1120 K 10 1170 K Virgin P. K. Sahoo, et al., J. Appl. Phys. 96 (2004) 0 300 450 600 120-keV Ge+ ions, fluence = 7x1014 ions/cm2 750 Normalized Damage (b) 1.0 RT 870 K 1070 K 1095 K 1120 K 1170 K 0.8 0.6 0.4 0.2 0.0 0 400 800 15 1200 2 Depth (10 at./cm ) Nearly full epitaxy! 1600 (a) Random 3 Normalized Yield (x 10 ) Energy (keV) 3 Nearly no epitaxy! Ge O 2 923 K RT 1023 K 1073 K 1123 K 1 1173 K Virgin 1223 K 0 200 300 400 500 Energy (keV) Si 600 3. Luminescence in Quartz & Silica Luminescence mechanisms: Excitation via electrons or UV? Quantum efficiency? Non-radiative transitions? Temperature dependence? Luminescent defect structures: Atomistic defects, nanoparticles? If nanoparticles: elements or oxides? crystalline or amorphous? embedded in quartz or silica? at interfaces? New: . Comparison silica – quartz Implant different ions Sytematics of annealing conditions Cathodoluminescence (CL) e-gun e -gun(CL) InGaAs-diode / photomultiplier Photomultiplier CCD-camera CCD camera exit slit mirror HV - chamber closed cycle Closed cycle Sampl He cryostat e grating entrance slit achromate aperture long pass filter band pass filter focus lense mirror spectrograph Spectrograph laser(PL) Laser (UV-) mirror chopper Wavelength range: 190 – 1700 nm Temperature range: 12 K – 300 K Maximal resolution: 5 pm (photomultiplier), 40 pm (CCD) Electron gun energy range: 100 eV – 5 keV (depth 100 nm) Chemical epitaxy: Na & Rb temperature dependence CL @ 300 K 20 Integrated CL Intensity (arb. unit) Virgin -quartz Amorphous -quartz (800 keV Ba) Grown SiO2 on Si (a) Intensity (arb. unit) Fused quartz (b) 843 K 1023 K 1173 K Rb (c) 873 K 973 K 1123 K Na 2.40 eV 2.79 eV 4.30 eV 15 Rb 10 (a) 5 as-impl. 0 80 TD = 860 K 60 40 Rb 20 3.25 eV 3.65 eV (b) TX = 1060 K as-impl. 0 20 TX = 930 K 15 (c) Na 10 5 as-impl. TD = 830 K 0 1,5 2,0 2,5 3,0 3,5 4,0 Energy (eV) 4,5 5,0 0 100 800 900 1000 1100 1200 Temperature (K) J. Keinonen, et al., Appl. Phys. Lett. 88 (2006) Chemical epitaxy: Na fluence dependence S. Gasiorek, et al. (2006, 2008) 14 Intensity (arb. unit) 2 1.0x10 Na/cm 16 2 1.0x10 Na/cm 16 2 5.0x10 Na/cm 16 2 7.5x10 Na/cm 17 2 1.0x10 Na/cm 16 2 5.0x10 Na/cm as-impl. (a) 2 3 4 (a) 14 3 (b) 2.40 eV 2.79 eV 3.25 eV 3.65 eV 4.30 eV CL @ RT -2 10 -3 10 -4 10 -5 10 0 2 4 6 8 16 10 2 Na-ion fluence (10 /cm ) Integrated CL intensity (arb. unit) Integrated CL intensity (arb. unit) Energy (eV) -1 2 1.0x10 Na/cm 16 2 1.0x10 Na/cm 16 2 5.0x10 Na/cm 16 2 7.5x10 Na/cm 17 2 1.0x10 Na/cm 16 2 5.0x10 Na/cm as-impl. 2 5 10 10 K Intensity (arb. unit) CL @ 300 K 4 Energy (eV) 5 0.3 (b) CL @ 10 K 0.2 2.90 eV 3.25 eV 0.1 0.0 0 2 4 6 8 16 10 2 Na-ion fluence (10 /cm ) Chemical epitaxy: Rb & Na fluence dependence Na Annealing @ 1123 K in (a) 14 3 4 Energy (eV) (b) CL @ 10 K 0.2 2.90 eV 3.25 eV 0.1 0 2 4 Intensity (arb. unit) 15 6 8 16 10 2 Na-ion fluence (10 /cm ) 2 1.0x10 Rb/cm 16 2 1.0x10 Rb/cm 16 2 1.75x10 Rb/cm 16 2 3.5x10 Rb/cm 16 2 5.0x10 Rb/cm 2 0.3 Rb CL @ 10 K (a) 10 K 5 Integrated CL Intensity (arb. unit) Intensity (arb. unit) Integrated CL intensity (arb. unit) 2 1.0x10 Na/cm 16 2 1.0x10 Na/cm 16 2 5.0x10 Na/cm 16 2 7.5x10 Na/cm 17 2 1.0x10 Na/cm 16 2 5.0x10 Na/cm as-impl. 2 0.0 18O -gas, 2 3 4 Energy (eV) 5 300 (b) 200 2.95 eV 3.25 eV 4.9 eV 100 0 0 1 2 3 16 4 2 Rb fluence (10 /cm ) 5 6 Chemical epitaxy: Rb+Ge; fluence dependence Integrated Intensity (arb. unit) Intensity (arb. unit) 0.6 (a) RT 0.5 0.4 0.3 Results: virgin Rb+Ge (As implanted) 16 2 1x 10 Ge/cm 14 2 Rb + 1x 10 Ge/cm 15 2 Rb + 1x 10 Ge/cm 16 2 Rb + 1x 10 Ge/cm 0.2 0.1 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Green (2.4 eV) Blue (2.72 eV) Blue-Violet (2.95 eV) Violet-1 (3.25 eV) Violet-2 (3.53 eV) UV (4.3 eV) 2 10 1 Photon energy (eV) (b) 10 CL @ 300 K 1) Intensities of intrinsic bands (2.40 & 2.79 eV) are nearly independent of Ge-fluence. 2) Intensities of violet bands (2.95, 3.25 & 3.53 eV) rise strongly with Ge-fluence. By double Rb/Ge irradiation, we have found a road to achieve high CL output and full epitaxy!! Ge-asimpl. 0 10 Rb/Ge-asimpl. 1 10 100 14 2 Ge-Fluence (10 ions/cm ) P. K. Sahoo, et al., NIM B240 (2005); Appl. Phys. Lett. 87 (2005) CL in quartz: Quantum efficiency @ RT 100 Tann = 1120 K 45 Ge+Rb-chem Ge-chem Rb+Ge - chem 40 CL eff. [arb. unit] 15 2 Intensity/(10 ions/cm ) 50 Ge - dyn 35 30 25 Ge - chem 20 15 Na - chem Ba - dyn Virgin 10 Rb - chem Ge-dyn 10 Na-chem Ba-dyn Rb-chem 1 Tann = 1120 K 5 Violet band 0 2 3 4 Energy (eV) 5 0.1 0 20 40 60 80 100 120 Atomic Mass (amu) Ge-dyn or Ge-chem give high CL output, but no epitaxy. Na-chem, Rb-chem & Ba-dyn give epitaxy, but low CL. Only Ge+Rb-chem provides high CL intensity & full SPEG. Sahoo, Gasiorek, Dhar, Lieb, NIM B 249 (2006) 140 Intensity (arb. unit) virgin -quartz amorphous -quartz (800 keV Ba) grown SiO2 on Si 4. Interpreting CL data RT Intrinsic Bands fused quartz not related to the way a-SiO2 is prepared: ion implantation, vapor deposition, chemical reaction Intrinsic bands of virgin quartz e-beam irradiation -------- Intrinsic bands of silica 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Energy (eV) Tann = 1120 K 45 15 2 Intensity/(10 ions/cm ) 50 Rb+Ge - chem 40 RT K. Stevens-Kalceff, JAP97 (2005); L.Skuja, et al, PSS(c) 2 (2005); J. Keinonen, et al., APL 88 (2006) Ge - dyn 35 Amorphized quartz a-SiO2 grown on Si Fused quartz (a-SiO2) 30 25 Ge - chem 20 15 Ion-specific bands Na - chem Ba - dyn Virgin 10 Rb - chem 5 0 2 3 Energy (eV) 4 5 Dynamic or chemical epitaxy @ 1120 K: Ge-dyn, Ba-dyn; Na-, Rb-, Ge-chem; Rb+Ge-chem Classification of CL bands @ RT Ba, Na, Rb, Cs, Ge Ion species; E (eV) (nm) Identification Ba: 2.00(2) 617, red Non-bridging oxyg.-hole: ≡Si–O• All: 2.40(2) 514, green Oxygen-vacancy interstitial pairs [Intr] Rb/Ge, Ge: 2.72(2) Na, Rb, Ba: 2.79(4) 454, blue 442, blue ODC center: ≡Si–Si≡, E´-center: ≡Si•Si≡, ≡Si• [Intr] Ge, Rb/Ge: 2.95(2) 418, violet Ge- and/or Rb-related defect? All, Rb/Ge: 3.25(2) 380, violet Ge-, alkali-related defect? Ba: 3.40(5) 363, violet Ba-related defects Rb/Ge: 3.53(3) 350, violet Ge- and/or Rb-related defect Alkali: 3.65(4) 338, violet Alkali-related defect: ≡Si-O-A All, Rb/Ge: 4.30(2) 287, UV ODC center, E´-center Ref. [Intr] [Intr] Stevens-Kalceff, et al., PR B52 (1995); PR B57 (1998); PRL 88 (2000) The 3.25 & 3.65 eV CL bands How do intensities depend on the annealing conditions? Integrated CL Intensity (arb. unit) = 2.5x1016/cm2; TCL = 300 K 20 15 Na Na 10 (a) TX = 930 K 3.25 eV 3.65 eV TX930 K has recrystallized 0 TD830 K 80 (b) TD = 860 K Rb Rb 40 20 TD = 860 K TX=1060K as-impl. TX = 1060 K 0 0 100 800 ions have outdiffused TX: 90% of amorphized zone 5 as-impl. TD = 830 K 60 TD: 90% of implanted alkali 900 1000 Temperature (K) 1100 1200 J. Keinonen et al., APL 88 (2006) Atomistic Defects Defect-free Quartz Self-Trapped Exciton (STE) Ge-oxygen-deficient center (GODC) Non-bridging oxygen hole (NBOHC+A) E´ center Figure taken from Lieb & Keinonen, Contemp. Phys. 47 (2006). A scenario for the 3.25-eV CL band Si implantation in silicon-rich silica ? ? F. Flores Gracia, et al., Superficies y Vacío 18 (2005) 7 Status Spring 2009 Epitaxy: Dynamic: Ne, Ba ☺ Chemical: Na, Rb, Cs ☺ Laser: Luminescence: Intrinsic bands Ion-specific band Correlations between 2.95 & 3.25 eV bands Ge partially Li partially Ba, Rb, Cs partially Chemical epitaxy + strong luminescence: Ge+Rb Full recristallization for alkali ions & high CL intensity through Ge; Ge predominantly on Si-sites Further investigations: Atomistic defects vs. nanoparticles? T-dependent & time-differential CL Laser epitaxy, PL & absorption spektroscopy TEM, EPR, NMR, RAMAN, post-irradiation, … Theoretical modeling K. P. Lieb & J. Keinonen, Cont. Phys. 47 (2006) 305; K. P. Lieb et al., Physica B 389 (2007); Rad. Eff. Def. Matter 162 (2007) 575; J. Keinonen, et al., in “Silicon Nanophysics” (World Scientific, 2008) 5. Outlook: Time differential CL (Rb/Ge) Time-differential CL with pulsed electron beam; Time resolution 0.8 s FWHM Time constants: 2.95 eV band: = 5.7 s 3.25 eV band: = 4.5 s CL Intensity (arb. unit) 1 = 5.7 s (3.25 eV) Skuja (1986,1998) 0.1 0.01 = 4.5 s (2.95 eV) 0 10 20 30 Time (s) 40 50 3-Level System. Ge-related ODC centers have luminescence lifetimes of 110 s for T1 S0 transition, and 6 ns for S1 S0 emission. We may attribute the observed lifetimes to T1 S0 transition. P. K. Sahoo, et al., Appl. Phys. Lett. 87 (2005) Laser epitaxy (Cs) 2500 Counts 2000 virgin random virgin as-impl. 2 4.0 J/cm 2 4.4 J/cm 2 4.7 J/cm O 1500 Cs 1000 Si 500 Retained Cs fraction (%) 250-keV Cs ions, fluence = 2.8x1016 /cm2; SIEMENS XP2020 excimer laser: = 308 nm, 300 K in air; 5×5 mm² laser spot: 3.2 - 4.7 J/cm²; 20 pulses at rate of 8 Hz 110 100 90 80 70 60 50 40 0 300 400 500 Energy (keV) 700 800 0 1 2 3 4 2 Energy density (J/cm ) No full epitaxy achieved Cs diffuses to surface and starts evaporating above 4.4 J/cm2 S. Gasiorek, et al., Appl.. Surf. Sci. 247 (2005) 396 5 Laser epitaxy (Cs) Corrected intensity [a. u] 25 Blue (a) pristine as-impl. 2 4.7 J/cm 2 4.5 J/cm 2 4.4 J/cm 2 4.0 J/cm 2 3.2 J/cm 20 15 Blue-Violet 10 Violet Green UV 5 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 Integrated intensity [a. u] Energy (eV) (eV) Photon energy 100 10 1 2.42 eV (Green) 2.79 eV (Blue) 3.25 eV (Blue-Violet) 3.65 eV (Violet) 4.30 eV (UV) CL spectrum: Intrinsic lines @ 2.42, 2.79 & 4.30 eV Ion-specific bands @ 3.25 & 3.65 eV (Cs) 0,01 as-impl. 3,6 Siemens XP2020 XeCl excimer laser: Pulse duration 55 ns, Wavelength 308 nm, Power 3.2 - 4.7 J/cm² 20 pulses at rate of 8 Hz. (b) 0,1 -0,5 0,0 3,2 250 keV Cs-ions implanted Fluence = 2.8×1016/ cm2 Range RpCs 110 nm 4,0 4,4 2 Energy density ) 2) Laser power(J/cm (J/cm 4,8 S. Gasiorek, et al., Appl. Surf. Sci. 252 (2006) Surface Structures (Na) Na+-ions (5.01016/cm2; 50 keV). Annealed for 1 h in 18O2 at 973 K (a); 1023 K (b); 1073 K (c), and 1123 K (d) a b 40 nm 20 nm 0.0 4.0 8.0 m c d 40 nm 10 nm 0.0 4.0 8.0 m 0.0 4.0 8.0 m 0.0 4.0 8.0 m Surface Structures: Spider Net (Rb) AFM images of -quartz irradiated with Rb+-ions (175-keV, 21016 ions/cm2). Annealed at 1173 K in 50-mbar 18O2 K.P. Lieb, et al., SPIE 7142 (2008) Polymorphs of Quartz Coesite monoclinic ß (high) Quartz hexagonal, stable > 573ºC ß-Tridimyte hexagonal 870-1470ºC (low) Quartz trigonal Non-irradiated Si-nc in silica Molecular Dynamics simulations Si-nc in silica destroyed by protons J. Keinonen, F. Djurabekova, K. Nordlund & K. P. Lieb, in Silicon Nanophotonics (2008) Collision cascade of 2-keV Si-ion in quartz 0.4 ps after impact from the left Si-nc in silica irradiated with 1-keV Si ions at an energy of 5 eV/Si-atom in nc, where amorphization takes place Quartz everywhere Thank you! Chemical epitaxy: Rb/Ge ERDA: Rb and Ge profiles RBS-C: Damage profile, Ge 4000 Virgin Random 16 2 10 Ge/cm (as-impl.) 16 2 10 Ge/cm (ann.) 16 2 Rb + 10 Ge/cm (as-impl.) 14 2 Rb + 10 Ge/cm (ann.) 15 2 Rb + 10 Ge/cm (ann.) 16 2 Rb + 10 Ge/cm (ann.) 3000 O 2000 Si Counts 1000 0 250 800 300 350 Ge 600 400 450 15 500 200 Rb + 10 Ge/cm (ann.) Channeled Ge Random 75% Ge on Si sites Rb 100 400 550 2 Rb 200 0 600 700 800 0 600 700 800 900 1000 Energy (keV) 1) Ge and Rb diffuse in amorphous zone ERDA & RBS. 2) Rb out-diffusion enhanced by presence of Ge ERDA & RBS. 3) For Ge-fluences 1015/cm2, epitaxy of SiO2 layer; 75% of implanted Ge substitute Si in quartz matrix RBS-C. Chemical epitaxy: Rb (CL) For comparison: Intrinsic bands of quartz and silica 2,0 1,5 virgin -quartz grown SiO2 on Si 1,0 fused quartz (a) 2.51016/cm2 Rb ions implanted. Chemical epitaxy in air (1h @ 843 – 1173 K) Chemical epitaxy in 18O2-gas (1h @ 843 – 1173 K) Intensity (arb. unit) 0,5 0,0 2,0 1,5 1,0 0,5 0,0 2,0 1,5 1,0 0,5 S. Gasiorek, et al., J. Non-Cryst. Solids 252 (2006) 0,0 1,5 virgin as-impl. 843 K 923 K 1023 K 1088 K 1173 K 843 K (c) 1173 K 843 K 923 K 1023 K 1133 K 1173 K 2,0 (b) 843 K 2,5 3,0 3,5 Energy (eV) 4,0 4,5 5,0 RBS-Channeling: Amorphous surface layer -beam 1 MeV -beam beam diverges in amorphous layer undamaged sample ? virgin sample Defects II P. V. Shusko, et al., J. Phys., Cond. Matter 17 (2005) 1 keV Si-Implantation 8 nm SiO2/Si: Nucleation, Growth & Decomposition Snapshots of KMC simulations and cross section of phase separation in 8-nmthick SiO2 on Si <001> during annealing. The simulations start from 1 keV Si profiles for fluences of (a) 3x1015 cm-2, (b) 5x1015 cm-2, and (c) 1x1016 cm-2, respectively (TRIDYN). Two regimes were identified, nucleation & growth (a) and spinodal decomposition (b,c). Additionally, percolation is observed at the highest fluence (c). Atoms are colored according to their coordination. The 15 nm scale only applies for the lower-right corner. Müller, Heinig, and Möller, Appl. Phys. Lett. 81 (2002) 3049 1-keV Si-Implantation 8 nm SiO2/Si Depth profiles of 1-keV Si+ SiO2 Width of the denuded zone (a) and mean nanocluster diameter & density (b) during annealing for both regimes, nucleation and spinodal decomposition Müller, Heinig, and Möller, Appl. Phys. Lett. 81 (2002) 3049