Project Status - MIT X-Ray Timing Explorer Project

Download Report

Transcript Project Status - MIT X-Ray Timing Explorer Project

MIT Workshop on Magnetized Accretion Disks October 19 & 20, 2006

Supported by:

MIT-France Program CEA Saclay, France MIT Kavli Inst. for Astrophysics & Space Research MIT Dept. EE&CS

RXTE

Project

Workshop Handouts & Logistics

Schedule: (4 sessions)

Name Tag

List of Participants

 

MIT wireless instructions for visitors Thursday dinner? …stay here after session 2 Legal Seafoods? Cambridge Brewery?

X-ray States of Black Hole Binaries: Observations and Physical Models Ron Remillard MIT Kavli Center for Astrophysics and Space Research

Workshop Motivations

Assess status of BH accretion physics General relativity astrophysics at 10 R g ?

X-ray states versus accretion models critical need for steep power-law / QPO paradigm discussions of magnetism in accretion disks

Communicate: observers ; theorists ; GR/MHD physicists 1.5 years since last UCSB program on BH theory informal format for hard results + views & intuitions motivate future work

Active X-ray States of BH Binaries

Thermal State:

thermal spectrum ;

L

a

T 4

; no QPOs Paradigm: Heat from weakly magnetized accretion disk 

Hard State:

flat, cutoff power law ; cool disk ; some QPOs Concept: Compton/synchrotron from steady jet (+ ADAF?) Jets are confined by magnetic fields from the disk?

Steep Power Law:

thermal + SPL + QPOs + HFQPOs ?? Magnetized Accretion Disk ; Accretion Torus ??

Black Hole X-ray Nova

GRO J1655-40

First known outbursts: 1994-95; (  ) 1996-97; 2005 Dynamical black hole binary 6.3 ( + 0.5) M o Relativistic Jets in 1994 ~Radio-quiet, 1996-97, 2005

Black Hole X-ray Nova

GRO J1655-40

Different X-ray States

Observation Reviews & Global Studies

Done & Gierlinski 2003 Fender 2006 Fender & Belloni 2004 Charles & Coe 2006 McClintock & Remillard 2006 Psaltis 2006 Remillard & McClintock 2006 van der Klis 2006 Zdziarski & Gierlinski 2004

MNRAS

, 342, 1041

Compact Stellar X-ray Sources

, Ch. 9

ARAA

, 42, 317

Compact Stellar X-ray Sources

, Ch. 5

Compact Stellar X-ray Sources

, Ch. 4

Compact Stellar X-ray Sources

, Ch. 1

ARAA

, 44, 49

Compact Stellar X-ray Sources

, Ch. 2

PThPS

, 155, 99

X-ray States of BHBs

1.

Thermal State:

f

disk > 75%;

rms

< 0.075 ; no QPOs (

a max

< 0.5%)

inner accretion disk

X-ray States of BHBs

1.

Thermal State:

classical disk model:

T(r) ~ r -3/4

L(r) ~ r -2

Heat from Accretion Disk ?

modified disk blackbody blackbody energetics GR/Keplerian velocities?

GX339-4 Relativistic Fe line

T(r)

a

r -p

;

p

~ 0.7 (Kubota et al 2005) (GR tweak of p=0.75) Kubota & Done 2004; Gierlinski & Done 2004 e.g. Miller et al. 2004; but see Merloni & Fabian 2003

Thermal State Paradigm ?

Spectral shape and luminosity evolution consistent with thermal-disk model: Hot gas in Keplerian orbits + efficient dissipation GR/MHD Simulations: Plasma + Magneto-Rotational Instability (MRI): ~Keplerian orbits ; high b =

P

gas / (

B

2 /8 p ) 

Thermal Radiation from a Weakly Magnetized Disk Alternatives:

low b inner disk (external seed

B

) ?

Plasma Rings (Coppi & Rousseau 2006 ) ?

GR MHD: Stronger jets with higher spin ?

Other X-ray states?

Hard State of BHBs

 

2. Hard State

f

disk < 20%; G ~ 1.4 - 2.1;

rms

> 0.10

steady jet

(radio emission: collimated, polarized, flat spectrum)

Hard State of BHBs: Steady Radio Jet

2. Hard State

f

disk < 20%; G ~ 1.4 - 2.1;

rms

> 0.10

steady jet

(radio : X-ray tight correlation Gallo et al. 2003)

States of Black Hole Binaries

1 10 100 .01 .1 1 10 100 Energy (keV) Frequency (Hz)

Energy spectra Power density spectra 3.

steep power law compact corona ?

 G > 2.4;

rms

< 0.15 ;

f

disk < 80% + QPOs (or

f

disk < 50%)

Neutron stars (atoll type) have thermal and hard states, but they never show strong SPL spectra!

Hard State of BHBs

mechanism? geometry?

• • 

Hybrid models: Synchrotron/Compton

(Markoff, Nowak, & Wilms 2005) Kalemci et al. 2005

ADAF-fed Syn./Comp.?

(Yuan, Cui, & Narayan 2005)

Cause of jets?

(GRMHD?) Vertical, external

B

can amplify modest outflows of standard sims.

XTEJ1118+480 (low N H )….truncated, cool disk (McClintock et al. 2001)

Steep Power Law

BHB Gamma Ray Bright State (Grove et al. 1998)

blackbody energetics SPL |

Physical Models for BHB States

Energy spectra Power density spectra State

steep power law physical picture Disk + ??

thermal

hard state

Energy (keV) Frequency (Hz)

3 X-ray States



3 Different Accretion Systems?

 Energy spectra  YES!

 Statistical Distributions in key parameters  YES!

6 BHBs [417 thermal; 214 hard; 184 SPL; 179 INT (all types)] GRO J1655-40 (1996-97) XTEJ1550-564 (4 outbursts) XTE J1859+226 (1999-2000) GX339-4 (3 outbursts) 4U1543-47 (2002) H1743-322 (2003)

 Power law : thermal (disk) coupling  YES!

Distributions in Photon Index

Hard SPL Thermal

Distributions in Temperature

Hard Thermal SPL

Distributions in Disk Fraction (2-20 keV)

Hard SPL Thermal

“Unified Model for Jets in BH Binaries” Fender, Belloni, & Gallo 2004 Remillard 2005

Coupling: power-law and thermal components

GRO J1655-40 XTE J1859+226 XTE J1550-564 Hard: cannot see disk Thermal : yes SPL : no

Conclusions

 Observations of BH X-ray states : need 3 models !

 Thermal state: weakly magnetized disk (GR/MCD + MRI) seems quite satisfactory  Hard state: key topics: hot flow : jet coupling ; spin?

 SPL state : PL:disk flux uncoupled; non-thermal corona (to MeV?); LFQPOs ; HFQPOs ; kinship to hard state is a key question

GR in SPL State: High Frequency QPOs

High Frequency QPOs

source HFQPO n (Hz) GRO J1655-40 300, 450 XTE J1550-564 GRS 1915+105 184, 276 41, 67, 113, 168 XTE J1859+226 190 4U1630-472 184 + broad features (Klein-Wolt et al. 2003) XTE J1650-500 250 H1743-322 166, 242 ------ ISCO for 10 M o BH: n f = 220 Hz (a * = 0.0)  Condensations at preferred radii  QPOs (Schnittman & Bertschinger 2004) 728 Hz (a * = 0.9)

High Frequency QPOs

source HFQPO n (Hz) GRO J1655-40

300, 450

XTE J1550-564 GRS 1915+105

184, 276

41, 67,

113, 168

XTE J1859+226 190 4U1630-472 184 XTE J1650-500 250 H1743-322

165, 241

-------

4 HFQPO pairs with frequencies in 3:2 ratio

HFQPOs Mechanisms

Diskoseismology

(Wagoner 1999 ; Kato 2001)  obs. frequencies require nonlinear modes? 

Resonance

 in Inner Disk (Abramowicz & Kluzniak 2001).

Parametric Resonance

(coupling in GR frequencies for {r, q } Abramowicz et al. 2004 ; Kluzniak et al. 2004; Lee et al. 2005) 

Resonance with Global Disk Warp

(S. Kato 2004) 

MHD Simulations

and HFQPOs (Y. Kato 2005) 

Torus Models

(Rezzolla et al. 2003; Fragile et al. 2005)  GR ray tracing of accretion torus (Bursa et al.) 

Other Models

(disk magnetosphere effects: Li & Narayan 2004 ; Alfven waves: Zhang et al. 2004)

HFQPO Frequencies vs. BH Mass

GROJ1655, XTEJ1550, and GRS1915+105

n

qpo at 2

n

o :

n

o = 931 Hz / M x

 Same QPO mechanism and similar value of a *  Compare subclasses while model efforts continue

LFQPO Subtypes

XTEJ1550-564

Wijnands et al. 1999 Cui et al. 1999 Remillard et al. 2002 Rodriguez et al. 2004 Casella et al. 2005 Type: Phase Lag: n 0 (Hz):

a

(rms %)

Q

: State: HFQPO coupling

A

soft

B

hard ~8 ~6 few 2 – 3 SPL yes, 3 n o few ~10 SPL yes, 2 n o

C

near zero 0.1 – 15 5 – 20 ~10 Hard/Int.

no HFQPOs

QPOs across states Jet

INT

SPL ?? diff. mechanism ?? evolution in magnetic instability