Transcript Document
Week 1: Introduction and Research Design Adv. Experimental Methods & Statistics PSYC 4310 / COGS 6310 Michael J. Kalsher Department of Cognitive Science PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 1 Course Overview • Review of research design. • Review of SPSS (data entry; setting up variables; graphing; syntax; etc.) • Statistical analysis techniques – – – – – Correlation and simple regression Multiple regression t-tests, ANOVA / ANCOVA / MANOVA Non-parametric statistics Factor analysis • Grading requirements – Labs, Problem Sets, Data Collection/Analysis Project PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 2 Research Methods & Design: Establishing Control over your variables • Historical foundations of scientific research in the behavioral and social sciences. • The importance of research design – Ruling out alternative explanations. – Establishing control of IVs. • Research Design vs. Statistical Analysis PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 3 Methods of Establishing Truth • Tenacity – “It’s so because it’s so” • Authority – “Aristotle said it’s so” • Logical Deduction (Rationalism) – Aristotle said women have fewer teeth than men (Premise) – You are a woman – Therefore, you have fewer teeth than I • Empiricism – Combines Logical Deduction with observation (measurement) – “Let’s count your teeth” PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Scientific Method • Shared observations – Rules out individual experiences like religious revelations or esthetic experiences (William James). • Reproducible Effects – “No miracles” • Conditional Truths – Premises may be wrong – Necessary Connection may be wrong PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Types of Relationship (between two concepts) PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Spurious Relationships PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Spurious Relationships Ice Cream Sales Heat Wave Swimming Pool Drownings A city's ice cream sales are found to be highest when the rate of drownings in the city’s swimming pools is highest. To allege that ice cream sales cause drowning, or vice-versa, would be to imply a spurious relationship between the two. In reality, a third variable, in this instance a heat wave, more likely caused both. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Sets of Relationships (a theory) PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Elements of a Theory Sensory Experience Theoretical Definition Operational Definition PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Theoretical Linkage • Verbal World – Provides Necessary Connection – Example:“Newspaper Readership will increase with Age because older persons will be more interested in world affairs, and will have more leisure time” • Provides a reasonable process by which the cause produces the effect PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Operational Linkage • Measurement World – Provides a description (logical or mathematical) of the change in the effect produced by a change in the cause – Example: PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Nonlinear Operational Linkages • Linear linkages are typically assumed by common statistical procedures. • Nonlinear linkages are more realistic, but more complex. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher A Model of the Research Process: Levels of Constraint (Model used to illustrate the continuum of demands placed on the adequacy of the information used in research and on the nature of the processing of that information.) High Low PSYC 4310/6310 Experimental Research Differential Research Correlational Research Case-study Research Naturalistic Observation Exploratory Research Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Research plan becomes increasingly detailed (e.g., precise hypotheses and analyses) but less flexible. Research plan may be general, ideas, questions, and procedures relatively unrefined. Classes of Research Variables: Variables defined by their use in research Independent variable A variable that is actively manipulated by the researcher to see what its impact will be on other variables. Dependent variable A variable that is hypothesized to be affected by the independent-variable manipulation. Extraneous variable Any variable (usually unplanned or uncontrolled factors), other than the independent variable, that might the dependent measure in a study. affect A constant Any variable prevented from varying (by holding variables constant, they do not affect the outcome of the ). research PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Classes of Research Variables: The Measurement Model Variable values are represented by numbers, but these numbers may not demonstrate all the characteristics of true numbers. 1. Nominal. A variable made up of discrete, unordered categories. Each category is either present or absent and categories are mutually exclusive and exhaustive (e.g., gender). 2. Ordinal. A variable for which different values indicate a difference in the relative amount of the characteristic being measured. 3. Interval. A variable for which equal intervals between variable values indicate equal differences in amount of the characteristic being measured. 4. Ratio. Ratios between measurements as well as intervals are meaningful because there is a starting point (zero). PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Scales of Measurement: Some Examples Levels of Measurement Nominal Examples Ordinal Ratio Diagnostic categories Socioeconomic Test scores; Weight; length; brand names; political class; ranks personality and reaction time; attitude scales # of responses Identity; magnitude Identity; magnitude; equal intervals equal intervals; or religious affiliation Properties Interval Identity Identity; magnitude true zero point Mathematical Operations Type of Data Typical Statistics PSYC 4310/6310 None Rank order Add; subtract Add; subtract; multiply; divide Nominal Ordered Score Score Chi Square Mann-Whitney t-test; ANOVA t-test; ANOVA U-test Advanced Experimental Methods and Statistics © 2012, Michael Kalsher The Role of Variance - In an experiment, IV(s) are manipulated to cause variation between experimental and control conditions. - Experimental design helps control extraneous variation--the variance due to factors other than the manipulated variable(s). Sources of Variance - Systematic between-subjects variance Experimental variance due to manipulation of the IV(s) [The Good Stuff] Extraneous variance due to confounding variables. [The Not-So-Good Stuff] Natural variability due to sampling error - Non-systematic within-groups variance Error variance due to chance factors (individual differences) that affect some participants more than others within a group PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 18 Separating Out The Variance SST SSM PSYC 4310/6310 Advanced Experimental Methods and Statistics SST = Sums of Squares Total SSM = Sums of Squares Model SSR = Sums of Squares Error SSR © 2012, Michael Kalsher 19 Controlling Variance in Experiments In experimentation, each study is designed to: 1. Maximize experimental variance. 2. Control extraneous variance. 3. Minimize error variance. • Good measurement • Manipulated and Statistical control PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 20 Controlling Variance in Observational Studies • Choose IV’s with large natural variance • Control for alternate explanations by measuring confounding variables and statistically removing their variance • Minimize error variance – Good measurement – Statistical control PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 21 Maximizing Experimental Variance: Strong manipulations and Manipulation Checks Experimental Variance (The Good Stuff) Due to the effects of the IV(s) on the DV(s) Ensure that experimental manipulations are strong and reliable! Manipulation Check Procedures designed to determine whether manipulation of the IV(s) had the intended effect(s) on the DV(s) PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 22 Controlling Extraneous Variance Extraneous variables: Between-group variables--other than the IV(s)--that have effects on whole groups and thus may confound the results. Goal: To prevent extraneous variables from differentially affecting the groups. Solution: Take steps to ensure that: (1) the experimental and control groups are equivalent at the beginning of the study; and (2) groups are treated exactly the same--save for the intended manipulation (of the IV). Methods (for controlling extraneous variance): 1. 2. Random Assignment Select participants on the basis of one or more potentially confounding variables (e.g., age, ethnicity, social class, IQ, sex). 3. Build the confounding variables into the study as additional IVs. 4. Match participants on the confounding variable or use within-subjects design PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 23 Test Statistics Essentially, most test statistics are of the following form: Systematic variance Test statistic = Unsystematic variance Test statistics are used to estimate the likelihood that an observed difference is real (not due to chance), and is usually accompanied by a “p” value (e.g., p<.05, p<.01, etc.) PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 24 Types of Mistakes Statistical decision Reject Ho Don’t reject Ho PSYC 4310/6310 Advanced Experimental Methods and Statistics True state of null hypothesis Ho true Ho false Type I error Correct © 2012, Michael Kalsher Correct Type II error 25 Effect Sizes: The coefficient of determination The statistical test only tells us whether it is safe to conclude that the means come from different populations. It doesn’t tell us anything about how strong these differences are. So, we need a standard metric to gauge the strength of the effects. r2 (r-Square), or the “Coefficient of Determination”, is one metric for gauging effect size. Rules of Thumb regarding effects sizes: Small effect: 1-3% of the total variance Medium effect: 10% of the total variance Large effect: 25% of the variance PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher r2 = SSM SST 26 Essential Elements of Research: Reliability, Validity, Control and Importance Reliability Getting the same result when a measurement device is applied to the same quantity repeatedly. Validity The extent to which a measurement tool (test, device) measures what it purports to measure. Control Behavior can be influenced by many factors, some known and others unknown to the researcher. Control refers to the systematic methods employed by a researcher to reduce threats to the the study posed by extraneous influences on the behavior of participants and the observer. validity of both the Importance PSYC 4310/6310 Does the research question we are trying to answer warrant the expenditure of resources (i.e., time, money, effort) that will be required to complete the study). Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Types of Reliability Test-retest Reliability Consistency of measurement over time Internal Consistency Inter-item correlation Interrater Reliability Level of agreement between independent Agreement observers of behavior(s). Assessed via Agreement + Disagreement x 100 correlation or the procedure at right. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Evaluating Measures: Effective Range Effective Range: Scales sensitive enough to detect differences among one group of subjects may be insensitive to detect differences among another. Scale Attenuation (or range restriction). A problem associated with scales not ranging high enough, low enough, or both. Leads to “ceiling” effects and “floor” effects that distort data by not measuring the full range of a variable. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Types of Validity Face validity. The (non-empirical) degree to which a test appears to be a sensible measure. Content validity. The extent to which a test adequately samples the domain of information, knowledge, or skill that it purports to measure. Criterion validity. Now (concurrent) and Later (predictive). Involves determining the relationship (correlation) between the predictor (IV) and the criterion (DV). Construct validity. The degree to which the theory or theories behind the research study provide(s) the best explanation for the results observed. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Internal vs. External Validity Internal Validity Extent to which causal/independent variable(s) and no other extraneous factors caused the change being measured. External Validity (generalizability) Degree to which the results and conclusions of your study would hold for other persons, in other places, and at other times. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Threats to Internal Validity: Factors that reduce our ability to draw valid conclusions Selection History Maturation Repeated Testing Instrumentation Regression to the mean Subject mortality Selection-interactions Experimenter bias PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Reducing Threats to Internal Validity The role of Control Behavior is influenced by many factors termed—confounding variables—that tend to distort the results of a study, thereby making it impossible for the researcher to draw meaningful conclusions. Some of these may be unknown to the researcher. Control refers to the systematic methods (e.g., research designs) employed to reduce threats to the validity of the study posed by extraneous influences on both the participants and the observer (researcher). PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Group/Selection threat Occurs when nonrandom procedures are used to assign subjects to conditions or when random assignment fails to balance out differences among subjects across the different conditions of the experiment. Example: A researcher is interested in determining the factors most likely to elicit aggressive behavior in male college students. He exposes subjects in the experimental group to stimuli thought to provoke aggression and subjects in the control group to stimuli thought to reduce aggression and then measures aggressive behaviors of the students. How would the selection threat operate in this instance? PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher History threat Events that happen to participants during the research which affect results but are not linked to the independent variable. Example: The reported effects of a program designed to improve medical residents’ prescription writing practices by the medical school may have been confounded by a self-directed continuing education series on medication errors provided to the residents by a pharmaceutical firm's medical education liaison. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Maturation threat Can operate when naturally occurring biological or psychological changes occur within subjects and these changes may account in part or in total for effects discerned in the study. Example: A reported decrease in emergency room visits in a long-term study of pediatric patients with asthma may be due to subjects outgrowing childhood asthma rather than to any treatment regimen introduced to treat the asthma. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Repeated testing threat May occur when changes in test scores occur not because of the intervention but rather because of repeated testing. This is of particular concern when researchers administer identical pretests and posttests. Example: A reported improvement in medical resident prescribing behaviors and order-writing practices in the study previously described may have been due to repeated administration of the same short quiz. That is, the residents simply learned to provide the right answers rather than truly achieving improved prescribing habits. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Instrumentation threat When study results are due to changes in instrument calibration or observer changes rather than to a true treatment effect, the instrumentation threat is in operation. Example: In Kalsher’s Experimental Methods and Statistics course, he evaluates students progress in understanding principles of research design at week 3 of the semester. A graduate T.A. evaluates the students at the conclusion of the course. If the evaluators are dissimilar enough in their approach, perhaps because of lack of training, this difference may contribute to measurement error in trying to determine how much learning occurred over the semester. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Statistical Regression threat The regression threat can occur when subjects have been selected on the basis of extreme scores, because extreme (low and high) scores in a distribution tend to move closer to the mean (i.e., regress) in repeated testing. Example: if a group of subjects is recruited on the basis of extremely high stress scores and an educational intervention is then implemented, any improvement seen could be due partly, if not entirely, to regression to the mean rather than to the coping techniques presented in the educational program. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Experimental Mortality threat Experimental mortality—also known as attrition, withdrawals, or dropouts—is problematic when there is a differential loss of subjects from comparison groups subsequent to randomization, resulting in unequal groups at the end of a study. Example: Suppose a researcher conducts a study to compare the effects of a corticosteroid nasal spray with a saline nasal spray in alleviating symptoms of allergic rhinitis (irritation and inflammation of the nasal passages). If subjects with the most severe symptoms preferentially drop out of the active treatment group, the treatment may appear more effective than it really is. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Selection Interaction threats A family of threats to internal validity produced when a selection threat combines with one or more of the other threats to internal validity. When a selection threat is already present, other threats can affect some experimental groups, but not others. Example: If one group is dominated by members of one fraternity (selection threat), and that fraternity has a party the night before the experiment (history threat), the results may be altered for that group. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Threats to External Validity: Ways you might be wrong in making generalizations People, Places, and Times Demand Characteristics Hawthorne Effects Order Effects (or carryover effects) PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher People threat: Are the results due to the unusual type of people in the study? Example: You learn that the grant you submitted to assess average drinking rates among college students in the U.S. has been funded. In late November, you post an announcement about the study on campus to get subjects for the study. 100 students sign up for the study. Of these, 78 are members of campus fraternities; the other 22 are members of the school’s football team. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Places threat: Did the study work because of the unusual place you did the study in? Example: Suppose that you conduct an “educational” study in a college town with lots of high-achieving educationallyoriented kids. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Time threat: Was the study conducted at a peculiar time? Example: Suppose that you conducted a smoking cessation study the week after the U.S. Surgeon General issued the well publicized results of the latest smoking and cancer studies. In this instance, you might get different results than if you had conducted the study the week before. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Demand Characteristics Participants are often provided with cues to the anticipated results of a study. Example: When asked a series of questions about depression, participants may become wise to the hypothesis that certain treatments may work better in treating mental illness than others. When participants become wise to anticipated results (termed a placebo effect), they may begin to exhibit performance that they believe is expected of them. Making sure that subjects are not aware of anticipated outcomes (termed a blind study) reduces the possibility of this threat. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Hawthorne Effects Similar to a placebo, research has found that the mere presence of others watching a person’s performance causes a change in their performance. If this change is significant, can we be reasonably sure that it will also occur when no one is watching? Addressing this issue can be tricky but employing a control group to measure the Hawthorne effect of those not receiving any treatment can be very helpful. In this sense, the control group is also being observed and will exhibit similar changes in their behavior as the experimental group therefore negating the Hawthorne effect. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Order Effects (carryover effects) Order effects refer to the order in which treatment is administered and can be a major threat to external validity if multiple treatments are used. Example: If subjects are given medication for two months, therapy for another two months, and no treatment for another two months, it would be possible, and even likely, that the level of depression would be least after the final no treatment phase. Does this mean that no treatment is better than the other two treatments? It likely means that the benefits of the first two treatments have carried over to the last phase, artificially elevating the no treatment success rates. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher The Role of Experimental Design In most social and behavioral research studies, we attempt to obtain at least one score from each participant (usually more!). Any obtained score is comprised of a number of components: 1. A ‘true score’ for the thing we hope we are measuring. 2. A ‘score for other things’ that we measure inadvertently. 3. Systematic (non-random) bias (usually ok as long as it affects all participants equally). 4. Random (non-systematic) error (which should cancel out over large numbers of observations). We want our obtained score to consist of as much ‘true score’, and as little of the other factors, as possible. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 49 Research Study Control Control removes sources of error in inferences – Reduces the chance of wrong conclusions – Increases the power of statistics to find relationships in the presence of random error (“noise”) Types of Control – Direct Manipulation – Randomization – Statistical Control PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 50 Types of Control: Direct Manipulation Sources of error held constant by research design or sampling decisions – Example: a researcher investigating the effects of seeing justified violence in video games on children knows that young children cannot interpret the motives of characters accurately. She decides to limit her study to older children only, to eliminate random responses or unresponsiveness of younger children. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 51 Types of Control: Randomization Unknown sources of error are equalized across all research conditions by randomly assigning subjects or by randomly choosing experimental materials. – Example: Many different factors are known to affect the amount of use of Internet social networking sites. A researcher wants to test two different site designs. He randomly assigns subjects to work with each of the two designs. This equalizes the amount of confounding error from unknown factors in both groups. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 52 Types of Control: Statistical Control Known confounding variables are measured, and mathematical procedures are used to remove their effect. – Example: A political communication researcher interested in studying emotional appeals versus rational appeals in political commercials suspects that the effects vary with the age of the viewer. She measures age, and uses it as an independent predictor (with multivariate statistics) to isolate, describe, and remove its effect. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 53 Contrasting Methods of Control Type of Control Strength Weakness Direct Manipulation • Removes effect completely • Must know source of effect • Reduces generalizability Randomization • Don’t have to know source of effect • Equalizes effect so there is no systematic confound • Reduces statistical power by adding to unsystematic error variance Statistical control • Estimates effect of confounding variables • Expands theoretical model • Must know source of effect • Requires more complex statistics PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 54 Basic Types of Research • Observational Methods • Quasi-Experimental Designs • True Experimental Designs PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 55 Observational Methods No direct manipulation of variables by the researcher. Behavior is merely recorded--but systematically and objectively so that the observations are potentially replicable. Advantages • • Reveals how people normally behave. Experimentation without prior careful observation can lead to a distorted or incomplete picture. Disadvantages • • Generally more time-consuming. Doesn’t allow identification of cause and effect. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 56 Quasi-Experimental Design In a quasi-experimental study, the experimenter does not have complete control over manipulation of the independent variable or how participants are assigned to the different conditions of the study. Advantages • • Natural setting Higher face validity (from practitioner viewpoint) Disadvantages • Not possible to isolate cause and effect as conclusively as with a “true” experiment. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 57 Types of Quasi-Experimental Designs PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 58 One Group Post-Test Design Measurement Treatment Time Change in participants’ behavior may or may not be due to the intervention. Prone to time effects, and lacks a baseline against which to measure the strength of the intervention. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 59 One Group Pre-test Post-test Design Measurement Treatment Measurement Time Comparison of pre- and post-intervention scores allows assessment of the magnitude of the treatment’s effects. Prone to time effects, and it is not possible to determine whether performance would have changed without the intervention. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 60 Interrupted Time-Series Design Measurement Measurement Time Measurement Treatment Measurement Measurement Don’t have full control over manipulations of the IV. No way of ruling out other factors. Potential changes in measurement. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Measurement 61 Static Group Comparison Design Group A: Treatment Measurement (experimental group) Group B: No Treatment Measurement (control group) Time Participants are not assigned to the conditions randomly. Observed differences may be due to other factors. Strength of conclusions depends on the extent to which we can identify and eliminate alternative explanations. 62 PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher Experimental Research: Between-Groups and Within-Groups Designs PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 63 Between-Groups Designs Separate groups of participant are used for each condition of the experiment. Within-Groups (Repeated Measures) Designs Each participant is exposed to each condition of the experiment (requires less participants than between groups design). PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 64 Between-Groups Designs Advantages • • • Simplicity Less chance of practice and fatigue effects Useful when it is not possible for an individual to participate in all of the experimental conditions Disadvantages • • Can be expensive in terms of time, effort, and number of participants Less sensitive to experimental manipulations PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 65 Examples of Between-Groups Designs PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 66 Post-test Only / Control Group Design Group A: Measurement Treatment (experimental group) Random allocation: Group B: Measurement No Treatment (control group) Time If randomization fails to produce equivalence, there is no way of knowing that it has failed. Experimenter cannot be certain that the two groups were comparable before the treatment. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 67 Pre-test / Post-test Control Group Design Group A: Measurement Treatment Measurement No Treatment Measurement Random allocation: Group B: Measurement Time Pre-testing allows experimenter to determine equivalence of the groups prior to the intervention. However, pretesting may affect participants’ subsequent performance. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 68 Random allocation: Solomon Four-Group Design Group A: Measurement Treatment Measurement Group B: Measurement No Treatment Measurement Group C: Treatment Measurement Group D: No Treatment Measurement Time PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 69 Within-Groups Designs: Repeated Measures Advantages • Economy • Sensitivity Disadvantages • Carry-over effects from one condition to another • The need for conditions to be reversible PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 70 Repeated-Measures Design Treatment Measurement No Treatment Measurement Measurement Treatment Measurement Random Allocation No Treatment Time Potential for carryover effects can be avoided by randomizing the order of presentation of the different conditions or counterbalancing the order in which participants experience them. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 71 Latin Squares Design Three Conditions or Trials order of conditions or trials: One group of participants A B C Another group of participants B C A Yet another group of participants C A B Order of presentation of conditions in a within-subjects design can be counterbalanced so that each possible order of conditions occurs just once. Problem not completely eliminated because A precedes B twice, but B precedes A only once. Same with C and A. PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 72 Balanced Latin Squares Design Four Conditions or Trials order of conditions or trials: One group of participants A B C D Another group of participants B D A C Yet another group of participants D C B A And yet another group of participants C A D B Note: This approach works only for experiments with an even number of conditions. For additional help with more complex multi-factorial designs, see: http://www.jic.bbsrc.ac.uk PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 73 Factorial Designs • include multiple independent variables • allow for analysis of interactions between variables • facilitate increased generalizability PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 74 Important Concepts Alternative hypothesis Dispersion Null hypothesis Score-level variable Standard Deviation Between-groups design Effect Size Observational study Skew Standard Error Categorical variable Experimental research One-tailed test Standard Deviation Systematic variation Central tendency Face validity Ordinal variable Standard Error Two-tailed test Confidence intervals Frequency distribution Outcome variable Systematic variation Type I error Confounding variable Independent variable Platykurtic Two-tailed test Type II error Construct validity Kurtosis Power Type I error Unsystematic variation Content validity Leptokurtic Practice effects Type II error Validity Continuous variable Level of Measurement Predictor variable Unsystematic variation Variance Correlational research Mean Quasi-exp. research Validity Within-groups design Counterbalancing Measurement error Randomization Variance z-scores Criterion validity Median Range Within-groups design Degrees of Freedom Mode Reliability z-scores Dependent variable Nominal variable Repeated measures Score-level variable Discrete variable Normal Distribution Sampling distribution Skew PSYC 4310/6310 Advanced Experimental Methods and Statistics © 2012, Michael Kalsher 75