Folie 1 - uni

Download Report

Transcript Folie 1 - uni

Lehrstuhl für
Modellierung
und Simulation
Statistical theory of the isotropic
turbulence (K-41 theory)
1. Basic definitions of the statistical
theory of turbulence
Lecture 3
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
Basic definitions. Reynolds averaging
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
2
Basic definitions. Correlation function
Rij ( x,r )  ui ( x )u j ( x  r ),
Rij ( r )  ui ( x )u j ( x  r ),
ii ( x,r ) 
ui ( x )ui ( x  r )
2
i
u (x)
Correlation function
Correlation function in homogeneous
turbulence
, Autocorrelation function

Lij ( x )   ii ( x,x j )dx j
0
ii (  ,x ) 
Integral length
ui ( t,x )ui ( t   ,x ) Autocorrelation temporal function
,
2
ui ( t,x )

Ti ( x )   ii (  ,x )d
Integral time
0
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
3
Samples
Typical form of the autocorrelation coefficient. Scalar turbulence
1.00
C
B
A
Resolution 300 µ
0.60
A
0.40
B
0.20
0.00
2D
-0.20
50 mm
Autocorellation function of f
0.80
C
-0.40
0
20
40 60 80 100 120 140 160
point number across the mixer
Physical meaning of sign change
PLIF Measurements of the LTT Rostock
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
4
Samples
Typical distribution of the integral length along the jet mixer.
Scalar turbulence
Lf /d
Resolution 300 µ
0,8
50 mm
0,7
0,6
0,5
0,4
2D
0,3
r-mode
j-mode
0,2
0,1
0
2
4
6
8
x/D
10
PLIF Measurements of the LTT Rostock
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
5
Typical autocorrelation coefficient
along the jet
autocorrelation coefficient of the
longitudinal velocity
1 along upper border of nozzle at x/D=0.5
2 along the jet axis at x/d=3.0
(from Ginevsky et al. (2004) Acoustic control of turbulent jets. Springer)
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
6
Isotropic turbulence
u2  ul (x)ul (x)  ut (x)ut (x)  1/
.....u
3ui i(x)u
(x)ui i(x),
(x),
f g
R ij  u ( 2 ri rj  g ij )
Rij  F(r)ri rj  G(r)ij
r
u (x)u l (x  r)
u (x)u t (x  r)
f (r)  l
,g(r)  t
, g  f  1 r f
u l (x)u l (x)
u t (x)u t (x)
2 r
2
u l (x)u l (x  r)  r 2 F(r)  G(r)  u 2f ,
u t (x)u t (x  r)  u 2g  G(r).
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
7
Isotropic turbulence
Taylor longitudinal length  f
Taylor transverse length
g
Taylor Reynolds number
Re  u/ g /
1  2f
 2f
1
2
4
f (r)  1 
(0)r

O(r
)

(0)


2 r 2
r 2
2 f 2
f (r)  1 
g(r)  1 
r2
2 f 2
r2
g 2
 2g
1
 2 (0)  
r
2 g 2
.
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
8
Correlation function in Fourrier space
f ( r ,t ) 
ˆf ( k ,t ) 

1
8 3



ˆf ( k ,t )eikr dk ,

f ( r ,t )e  ikr dr



1
ikr
Rij ( r )   ij ( k )e dk ,ij ( k )  3  Rij ( r )e ikr dr
8 

Usually it is possible to measure only the
„One dimensional spectral Function“
ij ( k1 ) 
1
2



Rij ( r1 ,0, 0 )eik1r1 dr1 
 
   ( k ,k ,k
ij
1
2
3
)dk2dk3
 
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
9
Proof
1
2
ij ( k1 ,0,0) 


Rij ( r1 ,0,0)e  ik1r1 dr1 ,



Rij ( r1 ,0,0) 
ij ( k1 ,0,0)eik1r1 dk1

  
Rij ( r1 , r2 , r3 ) 

ikr

(
k
,
k
,
k
)
e
 ij 1 2 3 dk1dk2dk3
  
 
 ik1r1
Rij ( r1 ,0,0)       ij (k1 , k2 , k3 )dk2dk3 e dk1
   


 
ij (k1 ,0,0) 
 
ij
(k1, k2 , k3 )dk2dk3 ,
 
UNIVERSITÄT ROSTOCK | LEHRSTUHL FÜR Modellierung und SIMULATION
10
Spectral density of the kinetic energy


1
Rij ( r )   ij ( k )e dk ,ij ( k )  3  Rij ( r )e ikr dr
8 

ikr

Rij ( r )  ui ( x )u j ( x  r )

1
1
TKE  Rii ( o )    ii ( k )dk    ii ( k )dk ,
2
2 
0
E( k )    ii ( k )dk ,
k

TKE( k )   E( k )dk ,
0
E(k) dk is the contribution of oscillations with the wave numbers k<k<k+dk
to the kinetic energy of the turbulent motion.
E(k) is the density of the kinetic energy depending on wave numbers.
The dependence E(k) isreferred to as the energy spectrum
UNIVERSITY of ROSTOCK | CHAIR OF MODELLING AND SIMULATION
11