Lagrangian Method Power Point Interpolation

Download Report

Transcript Lagrangian Method Power Point Interpolation

Lagrangian Interpolation

Major: All Engineering Majors Authors: Autar Kaw, Jai Paul http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates http://numericalmethods.eng.usf.edu

1

Lagrange Method of Interpolation

http://numericalmethods.eng.usf.edu

3

What is Interpolation ?

Given (x 0 ,y 0 ), (x 1 ,y 1 ), …… (x n ,y n ), find the value of ‘y’ at a value of ‘x’ that is not given.

http://numericalmethods.eng.usf.edu

4

Interpolants Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate

.

http://numericalmethods.eng.usf.edu

5

Lagrangian Interpolation

Lagrangian interpolating polynomial is given by

f n

(

x

) 

i n

  0

L i

(

x

)

f

(

x i

) where ‘

n

’ in

f n

(

x

) stands for the

n th

order polynomial that approximates the function

y

 given at (

n

 1 ) data points as 

x

0 ,

y

0

x

1 ,

y

1  ,......, 

x n

 1 ,

y n

 1  

x n

,

y n

 , and

f

(

x

)

L i

(

x

) 

j j n

  

i

0

x x i

 

x j x j L i

(

x

) is a weighting function that includes a product of (

n

 1 ) terms with terms of omitted.

j

i

http://numericalmethods.eng.usf.edu

6

Example

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Lagrangian method for linear interpolation.

Table Velocity as a function of time

t

(s)

v

(

t

) (m/s) 0 10 15 20 22.5

30 0 227.04

362.78

517.35

602.97

901.67

Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu

7

Linear Interpolation

517.35

550

v

(

t

) 

i

1   0

L i

(

t

)

v

(

t i

) 

L

0 (

t

)

v

(

t

0 ) 

L

1 (

t

)

v

(

t

1 ) 500 y s f range )  desired  450

t

0

t

1  15 ,    0  362 .

78  20 ,    1  517 .

35 400 362.78

350 10 x s 0  10 12 14 16 18 x s  range  x desired 20 22 24 x s 1  10 http://numericalmethods.eng.usf.edu

8

Linear Interpolation (contd)

L

0 (

t

) 

j j

1    0 0

t t

0 

t j

t j

t t

0  

t

1

t

1

L

1 (

t

) 

j j

1    0 1

t t

1 

t j

t j

t t

1  

t

0

t

0

v

(

t

) 

t t

0  

t

1

t

1

v

(

t

0 ) 

t t

1  

t

0

t

0

v

(

t

1 ) 

t

 15  20 20 ( 362 .

78 ) 

t

 15 20  15 ( 517 .

35 )

v

( 16 )  16  15  20 20 ( 362 .

78 )  16  15 20  15 ( 517 .

35 )  0 .

8 ( 362 .

78 )  0 .

2 ( 517 .

35 )  393 .

7 m/s. http://numericalmethods.eng.usf.edu

9

Quadratic Interpolation

For the second order polynomial interpolatio n (also called quadratic interpolation), we choose the velocity given by

v

(

t

) 

i

2   0

L i

(

t

)

v

(

t i

) 

L

0 (

t

)

v

(

t

0 ) 

L

1 (

t

)

v

(

t

1 ) 

L

2 (

t

)

v

(

t

2 ) http://numericalmethods.eng.usf.edu

10

Example

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Lagrangian method for quadratic interpolation.

Table Velocity as a function of time

t

(s)

v

(

t

) (m/s) 0 10 15 20 22.5

30 0 227.04

362.78

517.35

602.97

901.67

Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu

11

Quadratic Interpolation (contd)

t

0  10 ,

v

(

t

0 )  227 .

04

t t

2 1  15 ,

v

(

t

1 )  20 ,

v

(

t

2 )  362 .

78  517 .

35

L

0 (

t

) 

j j

2    0 0

t t

0 

t j

t j

  

t t

0  

t

1

t

1    

t t

0  

t

2

t

2  

L

1 (

t

) 

j j

2    0 1

t t

1 

t

t j j

  

t

1

t

t

0 

t

0    

t

1

t

t

2 

t

2  

L

2 (

t

) 

j j

2    0 2

t t

2 

t j

t j

  

t t

2  

t

0

t

0    

t t

2  

t

1

t

1   517.35

550 500 450 y s f range )  desired  400 350 300 250 227.04

200 10 10 12 14 16 x s  range  x desired 18 20 20 http://numericalmethods.eng.usf.edu

12

Quadratic Interpolation (contd)

v v t

     

t t

0  

t

1

t

1      

t t

0  

t

2

t

2   

v t

  0    

t t

1  

t t

0 0      

t t

1  

t t

2 2   

v

  1    

t t

2  

t

0

t

0      

t t

2  

t

1

t

1   

v

  2        16 10   15 15 0 .

08       16 10  227   .

04 20 20     227 .

04     362     .

78 16 15    10 10 0 .

   12    16 15   20 20 527 .

35      362 .

78      16 20  10  10       16 20  15  15     517 .

35   392 .

19 m/s The absolute relative approximate error obtained between the results from the first and second order polynomial is 

a

 392 .

19  393 .

70  100 392 .

19  0 .

38410 % http://numericalmethods.eng.usf.edu

Cubic Interpolation

13 For the third order polynomial (also called cubic interpolation), we choose the velocity given by

v

(

t

) 

i

3   0

L i

(

t

)

v

(

t i

) 

L

0 (

t

)

v

(

t

0 ) 

L

1 (

t

)

v

(

t

1 ) 

L

2 (

t

)

v

(

t

2 ) 

L

3 (

t

)

v

(

t

3 ) 602.97

700 600 y s f range )  desired  500 400 300 227.04

200 10 10 12 14 16 18 x s  range  x desired 20 22 24 22.5

http://numericalmethods.eng.usf.edu

14

Example

The upward velocity of a rocket is given as a function of time in Table 1. Find the velocity at t=16 seconds using the Lagrangian method for cubic interpolation.

Table Velocity as a function of time

t

(s)

v

(

t

) (m/s) 0 10 15 20 22.5

30 0 227.04

362.78

517.35

602.97

901.67

Figure. Velocity vs. time data for the rocket example http://numericalmethods.eng.usf.edu

Cubic Interpolation (contd)

15

t o

 10 ,

v

 

o

 227 .

04

t

2  20 ,

v

  2  517 .

35

t

1  15 ,

v

  1  362 .

78

t

3  22 .

5 ,

v

  3  602 .

97

L

0 (

t

) 

j j

3    0 0

t

0

t

t j

t j

  

t t

0  

t

1

t

1    

t t

0  

t

2

t

2    

t

0

t

 

t

3

t

3   ;

L

1 (

t

) 

j j

3    1 0

t

1

t

t

t j j

  

t t

1  

t

0

t

0    

t t

1 

t

2 

t

2    

t

1

t

 

t

3

t

3  

L

2 (

t

) 

j j

3    0 2

t t

2 

t j

t j

  

t

2

t

 

t

0

t

0    

t t

2  

t

1

t

1    

t

2

t

 

t

3

t

3   ;

L

3 (

t

) 

j j

3    0 3

t

3

t

t j

t j

  

t t

3  

t

0

t

0    

t t

3  

t t

1 1    

t

3

t

 

t

2

t

2   602.97

700 600 y s f range )  desired  500 400 300 227.04

200 10 10 12 14 16 18 x s  range  x desired 20 22 24 22.5

http://numericalmethods.eng.usf.edu

16

Cubic Interpolation (contd)

v

    

t t

0  

t

1

t

1    

t t

0  

t

2

t

2    

t t

0  

t

3

t

3  

v

  1   

t t

1  

t

0

t

0    

t t

1  

t

2

t

2    

t t

1  

t

3

t

3  

v

  2

v

  

t t

2  

t

0

t

0    

t t

2  

t

1

t

1    

t t

2  

t

3

t

3  

v

  2   

t t

3  

t

1

t

1    

t t

3  

t

1

t

1    

t t

3 

t

2 

t

2  

v

  3  16  15  10  15   16 10   20 20    16 10  22 .

5  22 .

5  227 .

04   16  10  16  20 15  10   15  20  16    15  22 .

5 22 .

5  362 .

    16 20 0 .

  10 10 0416  16  15  16  22 .

5  517 .

35    20  15 227 .

04     20  22 .

5 0 .

832  362 .

78   0 .

312 16 22 .

5  10  10  517 .

35    16 22 .

   5  0 .

15  16  20  15 1024   22 .

 602 .

5  20 97   392 .

06 m/s  78  602 .

97  The absolute relative approximate error obtained between the results from the first and second order polynomial is 

a

 392 .

06  392 .

19  100 392 .

06  0 .

033269 % http://numericalmethods.eng.usf.edu

17

Comparison Table

Order of Polynomial

v(t=16) m/s Absolute Relative Approximate Error

1

393.69

--------

2

392.19

3

392.06

0.38410% 0.033269% http://numericalmethods.eng.usf.edu

18

Distance from Velocity Profile

Find the distance covered by the rocket from t=11s to t=16s ?

v

(

t

)  (

t

3  57 .

5

t

2  1087 .

5

t

 6750 )(  0 .

36326 )  (

t

3  52 .

5

t

2  875

t

 4500 )( 1 .

9348 )  (

t

3  47 .

5

t

2  712 .

5

t

 3375 )(  4 .

1388 )  (

t

3  45

t

2  650

t

 3000 )( 2 .

5727 )

v

(

t

)   4 .

245  21 .

265

t

 0 .

13195

t

2  0 .

00544

t

3 , 10 

t

 22 .

5

s

( 16 ) 

s

( 11 )   16 11

v

(

t

)

dt

  16 11 (  4 .

245  21 .

265

t

 0 .

13195

t

2  0 .

00544

t

3 )

dt

 [  4 .

245

t

 21 .

265

t

2 2  0 .

13195

t

3 3  0 .

00544

t

4 4 ] 16 11 m http://numericalmethods.eng.usf.edu

19

Acceleration from Velocity Profile

Find the acceleration of the rocket at t=16s given that

v

(

t

)   4 .

245  21 .

265

t

 0 .

13195

t

2  0 .

00544

t

3 , 10 

t

 22 .

5

a

d dt v

d dt

  4 .

245  21 .

265

t

 0 .

13195

t

2  0 .

, 00544

t

3   21 .

265  0 .

26390

t

 0 .

01632

t

2

a

( 16 )  21 .

265  0 .

26390 ( 16 )  0 .

01632 ( 16 ) 2  29 .

665

m

/

s

2 http://numericalmethods.eng.usf.edu

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit http://numericalmethods.eng.usf.edu/topics/lagrange_ method.html

THE END

http://numericalmethods.eng.usf.edu