Transcript Document
Displacement Damage Dose Approach For Determining Solar Cell Degradation In Space With Spenvis Implementation Dr. Scott R. Messenger SFA, Inc. ([email protected]) SPENVIS & GEANT4 workshop Faculty Club Leuven, Belgium 3 - 7 October 2005 Outline • Introduction • Space Solar Cell Degradation Calculations – NASA JPL Equivalent Fluence Method – NRL Displacement Damage Dose (Dd) Method • Nonionizing Energy Loss (NIEL) – Comparisons • SPENVIS Implementation – MULASSIS is the key • Notes • Future Work S. Messenger, SPENVIS Workshop 2005 The Problem electrons protons p+ p+ e- p+ e- COVERGLASS e- ACTIVE CELL SUBSTRATE e- • Omnidirectional, isotropic, energy spectrum in space p+ • Unidirectional, normally incident, monoenergetic irradiation of bare solar cells on the ground S. Messenger, SPENVIS Workshop 2005 PANEL p+ p+ *Planar, slab geometry e- p+ Normalized Maximum Power Pmax Degradation Curves for GaAs/Ge Solar Cells (JPL, 1991) 1.0 GaAs/Ge 0.9 1 Sun, AMO o 25 C 0.8 0.7 0.6 Protons 0.5 9.5 MeV 3 MeV 1 MeV 0.5 MeV 0.3 MeV 0.2 MeV 0.1 MeV 0.05 MeV 0.4 0.3 0.2 0.1 0.0 8 10 9 10 10 10 Electrons 0.6 MeV 1 MeV 2.4 MeV 12 MeV 10 11 10 12 10 13 10 14 10 -2 Particle Fluence (cm ) S. Messenger, SPENVIS Workshop 2005 15 10 16 10 17 The Solution • Equivalent Fluence Method – created by NASA Jet Propulsion Laboratory (JPL) – Can be implemented through available FORTAN programs – Is included in the SPENVIS web-suite (and others) – Has widespread application and over 30 years of heritage • Displacement Damage Dose Method (Dd) – created by the US Naval Research Laboratory (NRL) – Does not have widespread application due to lack of distributed computational tool • Solar Array Verification and Analysis Tool (SAVANT) is available but only in beta-version (unfunded at present) • This paper shows how the SPENVIS web-suite can be used to implement the Dd method S. Messenger, SPENVIS Workshop 2005 JPL and NRL Methods •NASA Jet Propulsion Laboratory (Pasadena, CA) –Reduces mission space radiation effects to an equivalent 1 MeV electron fluence –Read EOL power from measured 1 MeV electron curve •US Naval Research Laboratory (Washington, DC) –Calculate displacement damage dose, Dd, for mission –Read EOL power from measured characteristic curve S. Messenger, SPENVIS Workshop 2005 JPL Method (Equivalent Fluence Method) •Summarized in two publications (developed in 1980’s) –Solar Cell Radiation Handbook, JPL Publication 82-69 (1982) –GaAs Solar Cell Radiation Handbook, JPL Publication 96-9 (1996) •Utilizes the concept of relative damage coefficients (RDC’s) •Reduces all damage to a 1 MeV electron equivalent fluence and uses 1 MeV electron data to get the EOL result •Several computer programs (FORTRAN) are available: –EQFLUX (Si), EQGAFLUX (GaAs), and multijunction (MJ) cell –Other programs (e.g. SPENVIS and Space Radiation) implement JPL method S. Messenger, SPENVIS Workshop 2005 JPL Equivalent Fluence Method Measure PV Degradation Curves (~4 electron and ~8 proton energies) Determine Incident Particle Spectrum (e.g. AP8) Determine Damage Coefficients for Uncovered Cells 1 MeV Electron Degradation Curve Calculate Damage Coefficients for Isotropic Particles w/ Coverglasses of Varied Thickness Calculate Equivalent 1 MeV Electron Fluence for Orbit (EQGAFLUX) Read Off EOL Values S. Messenger, SPENVIS Workshop 2005 Electron Damage Coefficients JPL Equivalent Fluence Method 102 Electron and Proton Fluence Data (GaAs/Ge, 1991) GaAs/Ge 0.9 1 Sun, AMO o 25 C 75% BOL 0.8 0.6 Normal incidence no coverglass 100 Coverglass Thickness 0 mil 1 mil 3 mil 6 mil 12 mil 20 mil 30 mil 60 mil 10-1 10-2 10-1 100 101 102 Electron Energy (MeV) Protons 0.5 Proton Damage Coefficients 9.5 MeV 3 MeV 1 MeV 0.5 MeV 0.3 MeV 0.2 MeV 0.1 MeV 0.05 MeV 0.4 0.3 0.2 0.1 0.0 8 10 101 10-3 0.7 9 10 10 10 102 *Relative to 10 MeV proton normal incidence data, w/o coverglass Electrons 0.6 MeV 1 MeV 2.4 MeV 12 MeV 10 11 10 12 10 13 10 14 10 -2 Particle Fluence (cm ) 15 10 16 10 17 Relative Pmax Damage Coefficient Normalized Maximum Power 1.0 Relative Pmax Damage Coefficient *Relative to 1 MeV normal incidence data, w/o coverglass Normal incidence no coverglass 101 100 Coverglass Thickness 0 mil 1 mil 3 mil 6 mil 12 mil 20 mil 30 mil 60 mil 10-1 10-2 10-2 10-1 100 Proton Energy (MeV) S. Messenger, SPENVIS Workshop 2005 101 102 Equivalent 1 MeV Electron Fluence 1MeV electron dp (Ep ) de (E e ) RDC(E e , t)dE e Cpe RDC(Ep , t)dEp dEe dEp where the RDCs for a coverglass thickness t is: /2 1 RDC(E,t) RDC(E0 ,0)2 sin d 4 0 (for electrons*) where the energy loss is determined from t E0 (E, , t ) R R(E) cos 1 R(E) is the range *for protons, another term is included to account for end-of-track effects S. Messenger, SPENVIS Workshop 2005 JPL Equivalent Fluence Method Initial Omnidirectional Spectrum Proton Damage Coefficients * R e l a t i v e t o 1 0 M e V n o r m a l i n c i d e n c e d a t a , w / o c o v e r g l a s s , b a s e d o n P m a x 1 1 0 10 13 10 12 10 10 10 9 10 8 C o v e r g l a s s T h i c k n e s s 0 1 0 10 11 1 1 0 5000 km, circular, 600 orbit (1 year duration) 10 7 -1 10 10 0 10 1 10 2 10 3 2 1 0 2 1 0 Proton Energy (MeV) 0 1 0 1 1 0 2 1 0 1 MeV Electron Pmax Degradation 1 . 0 G a A s G a A s / G e ( J P L , 1 9 9 0 ) o 1 S u n , A M 0 , 2 5 C 0 . 9 0 . 8 o 5 0 0 0 k m , c i r c u l a r , 6 0 o r b i t ( 1 y e a r d u r a t i o n ) 0 . 7 NormalizedP max Degradtion -/cm 2) 1 1 0 P r o t o n E n e r g y ( M e V ) Equivalent 1 MeV Electron Fluence 1 6 1 0 0 m i l 1 m i l 3 m i l 6 m i l 1 2 m i l 2 0 m i l 3 0 m i l 6 0 m i l RelativP max DamgeCoficnt Fluence (cm2MeV)-1 10 14 0 . 6 0 . 5 1 5 1 0 0 . 4 0 . 3 0 . 2 1MeVElctronFue( 0 . 1 1 4 1 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 S i O C o v e r g l a s s T h i c k n e s s ( m i l ) 2 0 . 0 1 4 1 0 1 5 1 0 1 6 1 7 1 0 1 0 -2 1 M e V E l e c t r o n F l u e n c e ( e / c m ) JPL Model Pros/Cons • Pros: – Heritage (developed in the 1980s) – Widely available and already incorporated into many space radiation suites (SPENVIS, Space RadiationTM, etc.) • Cons: – – – – Much ground test data needed ($$) Requires 1 MeV electron AND 10 MeV proton data Currently available for Si (1982), GaAs/Ge (1996), MJ (1999) Program not particularly user friendly (FORTRAN) – Several flags need to be set – Entire calculation is technology specific (every design change needs requalification, $$) S. Messenger, SPENVIS Workshop 2005 NRL Method (Displacement Damage Dose, Dd) •Summarized in: –Progress in PV: Research and Applications 9, 103-121 (2001) –Appl. Phys. Lett. 71, 832 (1997) –IEEE Trans. Nucl. Sci. 44, 2169 (1997) •RDCs calculated from the nonionizing energy loss (NIEL) •Determines degradation curve as a function of Dd and uses this curve to get the EOL result •Particle transport through the coverglass calculated independently from RDC calculation •Computer program (SAVANT) developed by NRL, NASA GRC, and OAI (unfunded at present) – SPENVIS? S. Messenger, SPENVIS Workshop 2005 NRL Displacement Damage Dose Method Choose Nonionizing Energy Loss (NIEL) Data (Energy Dependence of Damage Coefficients) Determine Incident Particle Spectrum (e.g. AP8, AE8) Calculate Slowed-Down Spectrum (SDS) (Shielding) Measure Characteristic Degradation Curve vs. Dd (Dd=NIELxFluence) (2 e- and 1 p+ energy) Calculate Dd for Mission (Integrate SDS with NIEL) Read Off EOL Value S. Messenger, SPENVIS Workshop 2005 NonIonizing Energy Loss NIEL= Rate at which energy is lost to nonionizing events; (UNITS=MeV/cm or MeVcm2/g) NIEL(E) min( Td ) d(,E) T( ,E)L[T( ,E)]d d Differential scattering cross section for displacements Lindhard partition factor Recoil energy S. Messenger, SPENVIS Workshop 2005 NonIonizing Energy Loss • Several calculations exist, all yielding similar results • Notable NIEL calculations (p+, e-, a, no, ions) : NRL group (NSREC, 1986-2003) Van Ginneken, 1989 NASA/JPL group (2000-2005, WINNIEL) CERN group (Huhtinen et al., 2000-2005) Akkerman and Barak, 2001 Inguimbert & Gigante (NEMO, 2005) Fischer and Thiel, U. Koln • Especially good agreement over practical proton energies for solar cells in space (0.1-10 MeV) S. Messenger, SPENVIS Workshop 2005 NIEL for Si (w/Neutron) 101 Si Si NIEL (MeVcm 2/g) 100 *Td = 21 eV 10-1 Proton Electron Neutron 10-2 10-3 10-4 10-5 10-6 10-4 10-3 10-2 10-1 100 101 Particle Energy (MeV) S. Messenger, SPENVIS Workshop 2005 102 103 NRL Displacement Damage Dose Method Choose Nonionizing Energy Loss (NIEL) Data (Energy Dependence of Damage Coefficients) Determine Incident Particle Spectrum (e.g. AP8, AE8) Calculate Slowed-Down Spectrum (SDS) (Shielding) Measure Characteristic Degradation Curve vs. Dd (Dd = NIEL x Fluence) (1 p+ and 2 e- energies) Calculate Dd for Mission (Integrate SDS with NIEL) Read Off EOL Value S. Messenger, SPENVIS Workshop 2005 Displacement Damage Dose (Dd) Unit is MeV/g is analogous to ionizing dose Rad(Si) (n1) Protons: n=1 NIEL(E) Dd (Eref ) (E) NIEL(E) NIEL(E ref ) Electrons: 1<n<2 Or, for a spectrum of particles, as that found in space, Dd d(Ep ) dEp NIEL (Ep )dE p Rep NIEL (Ee ) d(Ee ) NIEL (Ee ) dEe NIEL ( 1 MeV ) Slowed-down differential spectra S. Messenger, SPENVIS Workshop 2005 n1 dEe NRL Displacement Damage Dose Method 1.0 GaAs/Ge 0.9 1 Sun, AMO o 25 C 0.8 Characteristic Curve 1.0 0.7 0.6 Protons 9.5 MeV 3 MeV 1 MeV 0.5 MeV 0.3 MeV 0.2 MeV 0.1 MeV 0.05 MeV 0.5 0.4 0.3 0.2 0.1 0.0 8 10 10 9 10 10 Electrons Neutrons 0.6 MeV 1 MeV 2.4 MeV 12 MeV 1 MeV equiv. 10 11 10 12 13 10 14 10 10 15 16 10 10 17 -2 Particle Fluence (cm ) With NIEL 101 GaAs GaAs NIEL (MeVcm 2/g) 100 *Td = 10 eV, Ga & As Normalized Maximum Power Normalized Maximum Power Measured Data GaAs/Ge 0.9 1 Sun, AM0 T=25oC 0.8 0.7 0.6 0.5 0.4 0.3 0.2 Protons 9.5 MeV 3 MeV 1 MeV 0.5 MeV 0.3 MeV 0.2 MeV Electrons 0.6 MeV 1 MeV 2.4 MeV 12 MeV Neutrons 1 MeV equiv. 0.1 0.0 108 109 1010 1011 1012 -1 10 -2 10 Displacement Damage Dose (MeV/g) Proton Electron Neutron •Characteristic curve is independent of particle 10-3 •Calculated NIEL gives energy dependence of damage coefficients 10-4 10-5 10-6 10-4 10-3 10-2 10-1 100 101 102 103 •4 empirically determined parameters (C,Dx,Rep,n) Particle Energy (MeV) S. Messenger, SPENVIS Workshop 2005 NRL Displacement Damage Dose Method Choose Nonionizing Energy Loss (NIEL) Data (Energy Dependence of Damage Coefficients) Determine Incident Particle Spectrum (e.g. AP8, AE8) Calculate Slowed-Down Spectrum (SDS) (Shielding) Measure Characteristic Degradation Curve vs. Dd (Dd=NIELxFluence) (2 e- and 1 p+ energy) Calculate Dd for Mission (Integrate SDS with NIEL) Read Off EOL Value S. Messenger, SPENVIS Workshop 2005 An Analytical Calculation Implementing the Dd Approach • Based on the Continuous Slowing Down Approximation (CSDA) • The rate of energy loss equals that due to the total stopping power (i.e. no energy loss fluctuations, straggling) • Particle transport governed by range data • CSDA not expected to hold for electrons of low energy S. Messenger, SPENVIS Workshop 2005 Differential Fluence (cm -2MeV-1) Analytical Proton Transport Model 1016 E1 Uncovered 1015 E3 1014 1013 E5 3 mil 12 mil 1011 30 mil 1010 108 107 10-4 E4 SiO2 coverglass 1012 109 E2 E' 5000 km, Circular Orbit 60 Inclination 5 year mission 10-3 10-2 10-1 100 101 Proton Energy (MeV) S. Messenger, SPENVIS Workshop 2005 102 103 NRL Displacement Damage Dose Method Choose Nonionizing Energy Loss (NIEL) Data (Energy Dependence of Damage Coefficients) Determine Incident Particle Spectrum (e.g. AP8, AE8) Calculate Slowed-Down Spectrum (SDS) (Shielding) Measure Characteristic Degradation Curve vs. Dd (Dd=NIELxFluence) (2 e- and 1 p+ energy) Calculate Dd for Mission (Integrate SDS with NIEL) Read Off EOL Value S. Messenger, SPENVIS Workshop 2005 NRL Displacement Damage Dose Method NonIonizing Energy Loss 10 101 1014 SiO2 Coverglass Thickness 1013 10 3 mil 12 12 mil 1011 10 GaAs Uncovered 15 GaAs NIEL (MeVcm 2/g) Differential Fluence (cm -2MeV-1) Incident and SDS (Isotropic) 1016 30 mil 10 109 108 107 10-4 5000 km, Circular Orbit 60 Inclination 5 year mission 10-3 10-2 10-1 100 101 102 103 Proton Energy (MeV) *Td = 10 eV, Ga & As 100 Proton 10-1 10-2 10-3 10-4 10-3 10-2 10-1 100 101 102 103 Proton Energy (MeV) 1012 1.0 GaAs Normalized Maximum Power Total Mission Dose 5000 km, circular, 60o (1 Year Mission) Dd (MeV/g) 1011 1010 10 9 0 10 20 30 40 SiO2 Thickness (mil) 50 GaAs/Ge 0.9 1 Sun, AM0 T=25oC 0.8 0.7 0.6 0.5 0.4 0.3 Pmax Degradation 0.2 0.1 0.0 108 109 1010 1011 Displacement Damage Dose (MeV/g) S. Messenger, SPENVIS Workshop 2005 1012 Cumulative Fraction of Dd Cumulative Fraction of D d 1.0 GaAs 0.8 3 mil 0.6 12 mil 30 mil 0.4 5000 km, Circular Orbit 60 Inclination 5 year mission 0.2 0.0 10-4 10-3 10-2 10-1 100 101 102 Slowed-Down Proton Energy (MeV) S. Messenger, SPENVIS Workshop 2005 103 SAVANT Dd Analysis Code SAVANT: Solar Array Verification and Analysis Tool (NASA, NRL, OAI) S. Messenger, SPENVIS Workshop 2005 Comparison of Results 1 . 0 G a A s / G e 0 . 9 0 . 8 0 . 7 0 . 6 o 5 0 9 3 k m , c i r c u l a r , 6 0 o r b i t ( 1 y e a r d u r a t i o n ) 0 . 5 0 . 4 0 . 3 NormalizedMxmuPowerDgadtion 0 . 2 D i s p l a c e m e n t D a m a g e D o s e ( N R L ) M o d e l E q u i v a l e n t F l u e n c e ( J P L ) M o d e l 0 . 1 0 . 0 01 02 03 04 05 06 0 S i O C o v e r g l a s s T h i c k n e s s ( m i l s ) 2 S. Messenger, SPENVIS Workshop 2005 NRL Dd Model Pros/Cons • Pros: – Few ground test measurements needed (3) – Ground test particle energies can be conveniently chosen – Uniform damage deposition required over active region – Shielding algorithm is independent – Allows for rapid analysis of emerging cell technologies – Allows for easy trade studies – Can combine data from different experiments – Allows for alternate radiation particles (neutrons, alphas, etc.) • Cons: – Lack of heritage (developed in the mid-1990s) – More suited for sufficiently thin devices (~few mm) – Program currently not available to general public S. Messenger, SPENVIS Workshop 2005 Why does the Dd Method work so well? The energy dependence of the NIEL closely follows the RDCs over practical energies considered for space applications S. Messenger, SPENVIS Workshop 2005 Proton NIEL Comparison vs. RDCs Relative Pmax Damage Coefficient 103 SJ GaAs/Ge 2J InGaP/GaAs/Ge 3J InGaP/GaAs/Ge CIGS NIEL GaAs JPL MJ RDCs SRIM MJ RDCs Protons 102 101 100 *Parameters normalized to value at 10 MeV 10-1 10-2 10-1 100 Energy (MeV) S. Messenger, SPENVIS Workshop 2005 101 102 Electron NIEL Comparison vs. RDCs Relative Pmax Damage Coefficient 102 Electrons 101 100 SJ GaAs/Ge 2J InGaP/GaAs/Ge 3J InGaP/GaAs/Ge CIGS 1 MeV Equiv. NIEL GaAs (n=1.7) 1 MeV Equiv. NIEL CIGS (n=2) 10-1 10-2 *Parameters normalized to value at 1 MeV 10-3 10-1 100 101 Energy (MeV) S. Messenger, SPENVIS Workshop 2005 102 Effect of Low Energy Protons on Multijunction (MJ) Solar Cells S. Messenger, SPENVIS Workshop 2005 Monoenergetic, Unidirectional Irradiations 3J InGaP2/GaAs/Ge Remaining Factor of P max 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 108 Proton Energy 30 keV 50 keV 70 keV 100 keV 150 keV 250 keV 380 keV 1 MeV 2 MeV 3 MeV 5 MeV 109 1010 1011 Displacement Damage Dose (MeV/g) *T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, and T. Kamiya, Proc. 19th EPVSEC, Paris, 2004. S. Messenger, SPENVIS Workshop 2005 1012 Proton-Induced QE Degradation in MJ Cells 1.0 1.0 InGaP/GaAs/Ge InGaP/GaAs/Ge 0.8 Quantum Efficiency Quantum Efficiency 0.8 0.6 50 keV protons 50 keV Protons 0.4 Solid lines: Unirradiated Dashed lines: 1x1012 p+/cm2 0.2 0.0 300 500 700 900 1100 1300 1500 0.6 100 keV protons 100 keV Protons 0.4 Solid lines: Unirradiated Dashed lines: 1x1012 p+/cm2 0.2 1700 0.0 300 1900 500 700 900 1100 Wavelength (nm) InGaP/GaAs/Ge 1700 1900 InGaP/GaAs/Ge 0.8 Quantum Efficiency 0.8 Quantum Efficiency 1500 1.0 1.0 0.6 400 keV protons 400 keV Protons 0.4 Solid lines: Unirradiated Dashed lines: 1x1012 p+/cm2 0.2 0.0 300 1300 Wavelength (nm) 500 700 900 1100 1300 1500 0.6 1 MeV protons 1 MeV Protons 0.4 Solid lines: Unirradiated Dashed lines: 1x1012 p+/cm2 0.2 1700 1900 0.0 300 500 700 Wavelength (nm) S. Messenger, SPENVIS Workshop 2005 900 1100 1300 Wavelength (nm) 1500 1700 1900 Monoenergetic, Unidirectional Irradiations Top cell degradation InGaP GaAs Ge 1.0 63.1 keV Mono, Norm 251 keV Mono, Norm 1 MeV Mono, Norm 101 100 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10-1 10-2 10-1 100 101 102 Depth (mm) 103 0.0 108 Proton Energy 30 keV 50 keV 70 keV 100 keV 150 keV 250 keV 380 keV 1 MeV 2 MeV 3 MeV 5 MeV 109 Middle cell degradation 1010 1011 1012 Displacement Damage Dose (MeV/g) *Results from SRIM 2003 v.26 (www.srim.org) • • • • Remaining Factor of P max Vacancy Production Rate (#/mm/ion) 102 *T. Sumita, M. Imaizumi, S. Matsuda, T. Ohshima, A. Ohi, and T. Kamiya, Proc. 19th EPVSEC, Paris, 2004. Typical ground test conditions (not space conditions) Nonuniform vacancy distribution – Bragg Peak at end of track Different energies can preferentially degrade one sub-junction This effect is not seen in 1 MeV Electron irradiation S. Messenger, SPENVIS Workshop 2005 Spectrum, Omnidirectional Irradiation InGaP Vacancy Production Rate (#/mm/ion) 102 GaAs Ge L2 Spectrum, 3 mils SiO2 *Results from SRIM 2003 v.26 using special input file (TRIM.DAT) which specifies random incident angle and energy to simulate L2 spectrum (3 mil SiO2) 101 100 10-1 10-2 10-2 10-1 100 101 102 103 Depth (mm) • • Representative of exposure in the space radiation environment The vacancy distribution profile is nearly uniform over active region No special effects due to low energy protons apparent! S. Messenger, SPENVIS Workshop 2005 MJ Radiation Response Analysis Methodology • Space radiation environment produces virtually uniform vacancy distribution throughout cell – To reproduce this with a monoenergetic, unidirectionally incident particle, we need a fully penetrating proton (>1 MeV) – NO LOW ENERGY PROTON IRRADIATION NECESSARY • Total damage induced in cell (i.e. total number of vacancies) in space can be quantified in terms of Displacement Damage Dose (Dd) – Value of Dd is calculated by integrating the product of the sloweddown spectrum and the NIEL over energy – Validation exists for several MJ technologies – Enables quick and inexpensive qualification of new technologies – SPENVIS Implementation Soon!!! SPENVIS Implementation There are four basic components involved in this calculation: 1) Incident differential radiation spectra (SPENVIS) 2) Calculation of the “slowed-down” spectra after having passed through shielding (analytical, MULASSIS) 3) Calculation of the total Dd for the mission (MULASSIS) 4) Determination of the expected cell degradation (to be added, need characteristic curve info, i.e. C, Dx, n, Rep) MULASSIS is the enabling tool! S. Messenger, SPENVIS Workshop 2005 Walk Through SPENVIS Orbit Generation S. Messenger, SPENVIS Workshop 2005 – Walk Through SPENVIS – Incident Particle Spectra S. Messenger, SPENVIS Workshop 2005 Walk Through SPENVIS – Shielding (Slowed Down Spectra) and Equiv. Dd x x S. Messenger, SPENVIS Workshop 2005 Run • Fluence – gives slowed down spectra • NIEL option – performs integration with NIEL to give mission Dd (not fully operational) x x Calculations Made External to SPENVIS – Equivalent Value of Dd • Slowed-down spectra exported as TXT file from MULASSIS • Read into MS Excel and integrated with NIEL to give Dd • Also calculated by in-house NRL program for comparison 5093 km, circular, 57 degree, 1 year, 12 mils SiO2/Si 1.E+17 Differential Spectra (e/cm 2/MeV) Differential Spectra (p/cm 2/MeV) 1.E+16 1.E+15 1.E+14 1.E+13 protons 1.E+12 1.E+11 1.E+10 1.E+09 Incident Spectrum Slowed-Down Spectra (In-House Calc) Slowed-Down Spectrum (MULASSIS) 1.E+08 1.E+07 1.E+06 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 electrons 1.E+16 1.E+15 1.E+14 1.E+13 1.E+12 1.E+11 1.E+10 Incident Spectrum Slowed-Down Spectrum (In-House Calc) Slowed-Down Spectrum (MULASSIS) 1.E+09 1.E+08 1.E-03 1.E-02 Dd d(Ep ) dEp MULASSIS In-House Calc NIEL (Ep )dE p Rep 1.E-01 1.E+00 1.E+01 Electron Energy (MeV) Proton Energy (MeV) NIEL (Ee ) d(E e ) NIEL (E e ) dEe NIEL (1MeV ) Proton Dd (MeV/g) 3.8E+10 3.3E+10 S. Messenger, SPENVIS Workshop 2005 n1 dEe Electron Dd (MeV/g) 5.4E+08 6.0E+08 Thick Shielding Example *5093 km, circular, 57 degree, 1 year, 1000 mils Al/Si Differential Spectra (p/cm 2/MeV) 1.E+16 1.E+15 1.E+14 1.E+13 1.E+12 1.E+11 1.E+10 1.E+09 Incident Spectra Slowed-Down Spectra (Mathcad) MULASSIS (10,000,000 particles) 1.E+08 1.E+07 1.E+06 1.E+05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Proton Energy (MeV) MATHCAD RESULT MULASSIS RESULT Dd= Dd= % 1.85E+07 1.50E+07 1.91E+01 S. Messenger, SPENVIS Workshop 2005 MeV/g MeV/g Calculations Made External to SPENVIS – Solar Cell End-of-Life Power Output 1.1 Emcore 3J Cells 0.9 Norm Pmp Dd Pmax (Dd ) 1 C log1 P0 D x Energy (MeV) proton 0.7 electron 0.3 1 2.5 10 1 2 12 0.5 0 108 C = 0.199 Dx = 1.2x109 MeV/g Independent Variables n = 1.8 Rep = 0.17 109 1010 1011 (c, Dx, n, Rep) Displacement Damage Dose (MeV/g) 1.1 1.1 Tecstar 3J Cells Spectrolab EOL 3J Cells n/p cells 0.7 electron Norm Pmp Norm Pmp proton 0.3 1 2.5 10 0.6 1 12 Energy (MeV) 0.9 Energy (MeV) 0.9 C = 0.3 Dx = 3x109 MeV/g n = 1.6 Rep = 0.3 0.2 0.4 1 5 10 0.6 1 1.6 proton 0.7 electron Data from Marvin 2000 0.5 8 0 10 109 1010 Displacement Damage Dose (MeV/g) 1011 0.5 8 0 10 C = 0.25 Dx = 1x109 MeV/g n = 1.09 Rep = 0.17 109 1010 Displacement Damage Dose (MeV/g) S. Messenger, SPENVIS Workshop 2005 1011 Notes •Mulassis agrees very well with the analytical slab geometry model for protons •Mulassis allows for multiple interfaces and layers •Effect of electrons usually minimal (However, MULASSIS is probably better since analytical model assumes CSDA) •Could be extended for use with heavy ions and neutrons (NIEL is available for most cases) •Could be used for other devices where displacement damage is an important damage mechanism (e.g. LED light output, CCD degradation, transistor gain, etc.) S. Messenger, SPENVIS Workshop 2005 Future Work •Continue to work with ESTEC, BIRA, and QINETIQ to further implement the method and perform benchmark tests •Develop characteristic radiation degradation curves for current state-of-the-art solar cell technologies •Develop capabilities for other devices and irradiation particles S. Messenger, SPENVIS Workshop 2005