Transcript Folientitel
Research report on Life Cycle Cost Calculation O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl Institute of Interdisciplinary Construction Project Management Faculty of Civil Engineering Vienna University of Technology Университет по архитектура, строителство и геодезия (УАСГ) 2012-11-14 Content 1. Introduction 2. Calculation model LCC Bridge 3. Calculation model LCC Window 4. Calculation model LCC Metro station 5. Calculation model LCC Grooved Rail 6. Conclusion [email protected] 1 2 Introduction 3 4 5 6 Life cycle cost • Life cycle divided in phases - periods • Holistic perception of cost trends over the whole expected service life • Cost groups during life cycle o o o o o Planning costs Building costs Cost of maintenance during utilisation Unexpected costs (optional) Cost of demolition at end of life cycle [email protected] 4 Example of life cycle phases Planning phase Construction phase Utilisation phase Demolition phase Life cycle [email protected] e.g. e.g. e.g. e.g. e.g. 5 years 3 years 70 years 2 years 80 years 5 Current targets of optimisation • Predominant investment during construction phase • Less investment during utilisation • Usual focus on optimisation for construction phase • Construction cost are only reliable cost available • Hence construction cost are reference base of further cost calculation [email protected] 6 Planning strategy • Parameters for choice of system, quality of material and construction • Parameters impact level of expense during utilisation phase decisively • Targets of strategic planning of structure at budgeting of sustainable objects: to aspire maximum of service life to aim for minimum of costs to meet function without restriction [email protected] 7 Sustainability and life cycle Sustainability just a buzzword ?? Keeping house sustainable – when following the philosophy of 3P • Sustainability is serving people People • Conserving living environment for the next generation Planet • Sustainable projects must earn money Profit [email protected] 8 Structure of user specific cost • Acquisition cost – Financing cost – Total cost • Follow-up costs – Utilisation cost • • • • • • Capital cost Capital consumption Taxes and dues Administration cost Operating expenses Maintenance cost – Demolition cost [email protected] 9 Life cycle cost calculation • Life cycle cost are calculated for one single life span • Simplified calculation of LCC with only 3 input parameters: o CC [€] .. construction cost o m [a] .. theoretical service life o p [%] .. percentage of building cost CB • Calculation with final value (accumulated to future) present value (discounted to present) [email protected] 10 Final value – present value Final (future) value calculation - accumulated V final(future ) final VMaintenanc e V present (cash) * 1 z V present (cash) * q Δt Δt q Δt 1 Vannual Maintenance q 1 Present (cash) value calculation - discounted V present future 1 V V final Δt Δt q 1 z present VMaintenanc e q Δt 1 1 Vannual Maintenance Δt q 1 q [email protected] 11 Roman arched bridge across river Tajo in Alcántara / Spain 1 Calculation model LCC Bridge 2 3 4 5 6 Aim of Research • Computer program for LCC calculation • Variables used as multiplying factors for • Theoretical utilization time • Percentages of annual maintenance cost • Two calculation models depending on appliance • Life cycle model with defined life span • LCC calculation with final value • LCC calculation with present value • Redemption model • presupposing unlimited life span and maintenance [email protected] 13 Program targets • Creation of a consistently applicable tool for calculation of life cycle cost of a single bridge • Desired possibilities of application: • • • • • • Comparison of bridges Comparison of variants Optimisation of planning process Checking of costs Redemption → change of upholder Leasing of bridges [email protected] 14 Matching coefficients • Adaption of tabular values of redemption guideline using matching coefficients for special cases: o Variance of construction guidelines o Exceeding of normative defaults o Consideration of new material technology o Experimental projects o Accreditation of construction elements o Assessment of alternative offers • Quality criteria for planning bridges o Adaptability for road bridges o Additional criteria [email protected] 15 Key table of redemption guideline 1 2 3 4 5 6 Bauliche Anlagen theoretische Nutzungsdauer m und %-Satz der jährlichen Unterhaltungskosten p Unterbau Widerlager, Flügelwände, Pfeiler, Stützen, Pylone (jeweils inkl. Gründung) 1.1 aus Mauerwerk, Beton, Stahlbeton 1.2 aus Pfahlwänden, Schlitzwänden 1.3 aus Stahlspundwänden aus Stahlspundwänden ohne Korrosionsschutz aus Stahlspundwänden mit Korrosionsschutz 1.4 aus Stahl 1.5 aus Holz Überbau: Tragkonstruktionen (Balken, Platten, Bögen, Kastenquerschnitte) 2.1 aus Stahlbeton 2.2 aus Spannbeton aus Spannbeton mit internen Spanngliedern aus Spannbeton mit externen Spanngliedern 2.3 aus Stahl 2.4 aus Stahl-Beton-Verbundkonstruktionen Stahltragwerke mit Betonplatte Walzträger in Beton Stahlträger in Beton mit Doppelverband (z.B. Preflexträger) 2.5 aus Holz für Geh- und Radwege ohne Schutzdach für Geh- und Radwege mit Schutzdach für Straßen Rahmenartige Tragwerke (einschl. Gründungen) Geschlossene Rahmen, unten offene Rahmen, vergleichbare Rahmenkonstruktionen 3.1 aus Stahlbeton 3.2 aus Spannbeton 3.3 aus Stahl Gewölbe (einschl. Gründungen) 4.1 Mauerwerk, Beton 4.2 Stahlbeton Wellstahlrohre einschl. Flügelwände und Gründungen Ausrüstung 6.1 Ausrüstung C1: umfasst 30 % der gesamten Ausrüstungskosten [email protected] 6.2 Ausrüstung C2: umfasst 70 % der gesamten Ausrüstungskosten m [a] p [%] 110 90 0,5 0,5 50 70 100 50 0,6 0,5 0,8 2,0 70 0,8 70 70 100 1,3 1,1 1,5 70 100 100 1,2 0,8 0,5 40 50 40 2,5 2,0 2,5 70 70 100 0,8 1,2 1,5 130 110 70 0,6 0,5 0,8 20 30 1,5 1,2 16 Matching coefficient ► durability of structure Negative impact on structure may require adjustment of concrete quality. • Tabular values for concrete cover dconcrete = 3,5 cm (usual) mconcrete 70 Years pconcrete 0,8 % cost km 1,00 k p 1,00 • Increase of concrete cover to 4,0 cm (6,0 cm) results in higher durability more concrete and reinforcement positive impact (life span) negative impact (cost) mconcrete 70 years pconcrete 0,8 % cost k m new 1,10 k p new 0,85 mconcrete new 70*1,10 77 years pconcrete new 0,8 * 0,85 0,68 % cost [email protected] 17 Calculation model LCC Bridge • Comparison of different bridges • Commitment of parameters • Fixed interest rate of capitalisation 4 % p.a. • Fixed values depend on structure and construction • theoretical service life (life span) m [a] • annual maintenance cost CaM → percentage p [%] of building cost CB = CC + CAC [email protected] 18 Construction cost CC • Calculation based on CONSTRUCTION COST CC only reliable well-established value • Construction cost CC contain: • Production cost of construction units • Related miscellaneous works • Clearance of traffic, site protection • Generation of execution documents, plans • Difficulties for third parties [email protected] 19 Calculation with final value method LCC Bfv C B * q m CC 1,10 q m LCC Mfv CaM qm 1 qm 1 CC 1,10 p q 1 q 1 LCC Dfv C D CC 0,22 fv fv fv LCC LCC LCC LCC B M D fv Building cost CB = CC + CAC = CC* 1,10 Administration cost CAC = 0,10 * CC Annual maintenance cost CaM = CB * p = CC*1,10 * p Dismantling cost CD = CDem + CAD = 0,20 * CC + 0,10 * CDem = CC* 0,22 [email protected] 20 Screen shot examples of cost schedule schedule of interest cost of equipment interest cost cost schedule sum of costs construction cost construction cost annnual maintenance cost annual maintenance cost demolition cost demolition cost no-interest cost schedule of no-interest cost of main structure [email protected] schedule of no-interest cost of equipment schedule of total interest cost 21 Report of results Life cycle cost model results pdf.report data graphics data back-up present value 1953 Final value 2023 graphic data data setting [email protected] 22 Net weight Building movement Outside temperature, rain, wind, sun, noise Window movement Calculation model LCC Window Room temperature humidity 1 2 3 4 5 6 Windows in municipal housing Life cycle consideration is strongly attracting notice Window critical part of the building shell Alu-material light, stiff, bearing, easy recycling Coating long-lasting surface free of maintenance Little maintenance only on changing parts Intensive mechanical load rough usage in social flats rapid mechanical wear Durability = service life + behaviour of user Life cycle consideration decisive for evaluation of sustainability and intrinsic value [email protected] 24 Acid laboratory test of 3 window types Tested frame material of windows: aluminium French window single frame Window single frame Casement window double frame [email protected] 25 Calculation basis Life cycle period in years Tested windows Material Base + frame + glass Hold + fittings Gaskets Controlling period Window single frame French window single frame Casement window double frame Aluminium Wood Wood-Alu Plastic 60 40 25 60 40 40 25 40 50 40 25 50 25 25 25 25 [email protected] 26 LCC single frame window alu versus plastic positions ALUMINIUM-window single frame Base + frame + glass Hold + fittings Gaskets Controling period/Σ useful life [years] 60 40 25 60 positions PLASTIC-window single frame Base + frame + glass Hold + fittings Gaskets Controling period/Σ useful life [years] 25 25 25 25 cost [€] 644 91 59 794 cost [€] 411 91 59 561 Change spare parts: wages (work) & material (equipment) all-inclusive. cost appearance cost ALUMINIUM-window no-interest single frame [€] Base + frame + glass 644 Equipment (Fr+HoF+Ga) 359 Wages (60 €/action) 180 Maintenance (0,25%/year) 119 Sum after 60 years 1.302 Present value 794 LCC interest rated [€] 6.775 2.097 457 491 9.820 934 cost appearance PLASTIC-window single frame Base + frame + glass Equipment (Fr+HoF+Ga) Wages (60 €/action) Maintenance (2,5%/year) Sum after 60 years Present value LCC interest rated [€] 6.554 2.392 326 3.471 12.743 1.211 [email protected] cost no-interest [€] 1.233 450 120 841 2.645 561 27 LCC single frame window - ALU First change of window after 60 years Equipment: Fittings, hold (40 a), gaskets (25 a) [email protected] 28 Comparison of frame-material LCC of single frame French window Wood Plastic Wood-Alu 26 ALU [email protected] 29 LCC on example of a municipal flat (all material) Typical flat with 5 single frame windows and 1 single frame French window Wood Plastic ALU Wood-Alu 26 [email protected] 30 Future requirements on windows • Guidelines are tightening requirements on windows • Future coefficient of heat transmission is very low: • • • • UW 1,0 W/m²K Future increase of window weight expected because of multiple glazing and rising thickness of glass. Modern alu-windows are high quality systems with • Good heat insulation • Long service life • Practically free of maintenance Durability depends on combination of service life and user behaviour. Window material aluminium expecting to meet stronger future requirements reliably. [email protected] 31 Calculation model LCC Metro station 1 2 3 4 5 6 Metro cost structure / maintenance [email protected] 33 Cost composition LCC € m ² a LCCcost category quantity[ m²] * LCC Dimension: m1, m², m³, to, piece, etc. [email protected] 34 Prediction of quantity Whereof is surface depending on? Impact of structure on design … • • • • Upper level - deep level Crossing station Central platform - lateral platform … Auxiliary means for quantity prediction • • • • Comparison of existing stations Statistical analysis Design guidelines Expert experience [email protected] 35 Methods of quantity prediction Example - comparative analysis 5 12 Linien Station Fläche Bahnsteig Gang 1 Aderklaaer Straße 3.744,42 1.057,70 1.309,77 1 Alser Straße 2.791,00 703,57 37,85 1 Alte Donau 3.056,06 1.102,00 575,00 1 Alt Erlaa 2.238,00 857,00 78,00 1 Am Schöpfwerk 2.191,00 1.052,00 50,00 1 Aspernstraße 4.793,64 1.262,12 168,54 1 Braunschweiggasse 1.728,00 760,00 275,00 1 Burggasse 1.661,00 1.076,00 3,00 1 Donauinsel 2.721,00 760,00 1.199,00 1 Donaumarina 3.318,77 1.244,12 194,48 1 Donauspital 3.129,83 1.013,16 106,54 1 Donaustadtbrücke 3.297,40 1.201,01 301,51 1 Dresdner Straße 3.189,00 1.168,00 642,00 1 Enkplatz 7.173,11 898,00 2.332,53 1 Erdberg 4.101,00 989,00 362,00 1 Erlaaer Straße 1.680,00 828,00 52,00 100% 1 Floridsdorf 10.039,00 1.620,00 2.870,00 80% 1 Friedensbrücke 2.645,00 1.522,00 32,00 60% 1 Gasometer 3.862,97 900,00 1.151,00 40% 1 Großfeldsiedlung 3.845,54 1.000,55 1.349,75 20% 1 Gumpendorfer Straße 1.630,00 889,00 15,00 10% Handelskai 6.062,00 1.446,00 640,00 1 Hardeggasse 3.153,00 1.067,04 139,56 1 Heiligenstadt 6.329,68 1.740,00 1.126,00 1 Herrengasse 3.166,00 928,00 675,00 1 Hietzing 2.309,00 994,00 96,00 1 Hütteldorf 9.941,47 1.342,00 767,00 Fläche in m² 1 Hütteldorferstraße 7.265,35 Area 1.231,00 in m² 1.361,00 1 Jägerstraße 4.377,00 1.118,00 1.273,00 1 Johnstraße 10.444,00 1.145,00 1.941,00 1 Josefstädter Straße 1.491,00 668,00 16,00 1 Kagran 6.548,10 1.006,00 764,18 15 20 21 24 26 27 28 33 Halle Lager/Archiv Leerraum Passage Sanitärraum Stiege Technikraum Sonstiges 0,00 100,61 102,66 167,37 14,51 127,89 0,00 65,07 0,00 0,00 43,37 0,00 180,00 420,64 27,36 0,00 33,00 354,00 164,00 40,00 0,00 138,00 21,00 155,00 274,00 193,00 0,00 0,00 11,00 266,00 0,00 167,09 0,00 670,05 38,39 0,00 113,00 87,00 0,00 0,00 12,00 104,00 0,00 13,00 0,00 0,00 12,00 288,00 233,00 90,00 0,00 0,00 40,00 125,00 0,00 38,08 0,00 403,43 0,00 136,84 0,00 72,70 0,00 281,38 10,04 0,00 0,00 68,08 0,00 251,46 12,64 39,96 93,00 349,00 0,00 0,00 17,00 150,00 0,00 694,00 227,15 523,00 23,86 560,69 0,00 85,00 0,00 418,00 72,00 262,00 159,00 197,00 0,00 0,00 11,00 130,00 0,00 1.287,00 153,00 1.830,00 239,00 297,00 35,00 184,00 20,00 0,00 21,00 111,00 256,00 20,00 0,00 0,00 25,92 243,00 196,84 40,66 132,49 0,00 13,56 126,40 146,00 54,00 0,00 0,00 value 27,00 Statistical mean of floor196,00 space 1.090,00 125,00 996,00 0,00 66,00 489,00 0,00 54,63 0,00platform 265,46 central 1.167 m²11,31 (+ 30%) 0,00 Mittelbahnsteig 1.353,00 562,00 0,00 260,00 57,00 72,00 lateral platform 899 m² Seitenbahnsteig 0,00 36,00 0,00 358,00 20,00 203,00 258,00 191,00 54,00 0,00 38,00 134,00 164,00 839,00 230,00 308,00 123,00 261,00 33,00 472,00 107,00 1.063,00 34,35 349,00 261,00 642,00 0,00 0,00 14,00 288,00 285,00 1.011,00 80,00 541,00 126,00 685,00 143,00 61,00 0,00 0,00 37,00 277,00 [email protected] 413,00 1.538,30 12,00 0,00 137,52 170,00 0 - 400 400 - 500 500 - 600 600 - 700 700 - 800 800 - 900 900 - 1.000 1.000 - 1.100 1.100 - 1.200 1.200 - 1.300 1.300 - 1.400 1.400 - 1.500 1.500 - 1.600 1.600 - 1.700 1.700 - 1.800 1.800 - 1.900 1.900 - 2.000 2.000 - 2.100 2.100 - 2.200 2.200 - 2.300 2.300 - 2.400 Einzelstationen Example - statistic analysis: Lateral platform – central platform Bahnsteig 812,44 170,71 341,00 345,00 287,00 2.018,70 274,00 113,00 274,00 1.228,97 1.381,09 1.398,19 659,00 1.744,70 1.080,00 256,00 1.347,00 406,00 1.002,25 923,84 162,00 required 992,00 1.472,64 988,68 702,00 426,00 565,00 1.532,00 678,00 4.167,00 132,00 1.261,00 51,47 1.770,43 23,06 440,00 58,00 468,75 103,00 156,00 0,00 72,85 264,92 24,55 111,00 169,18 833,00 47,00 396,00 314,00 264,80 61,45 141,00 218,00 142,36 171,00 244,00 118,00 5.342,47 1.083,00 103,00 463,00 157,00 1.246,10 268 m² exceeded floor space required 36 Project advancement Modelling step 1 – quantity estimation Project idea Comparison with existing stations 1. Concretion Statistical analysis 2. Concretion Design guidelines Basic design Existing surfaces [email protected] 37 Model step 2 – cost development Cost increase Interest yield Prediction required [email protected] 38 Price index – exponential increase ? Standard wage index 1000 y = 18.896x - 37075 R² = 0.9936 Building price index 8.00% 800 6.00% 600 4.00% 400 2.00% 200 0 0.00% 1960 1970 1980 1990 2000 2010 2020 300.00 250.00 10.0% y = 4.8147x - 9422 R² = 0.9877 8.0% 200.00 6.0% 150.00 4.0% 100.00 2.0% 50.00 0.00 1970 1980 1990 2000 2010 0.0% 2020 Wholesale price index y = 1.65x - 3149.9 R² = 0.8318 200 10.0% 150 5.0% 100 0.0% 50 -5.0% 0 1970 1980 1990 2000 2010 No exponential increase -10.0% 2020 [email protected] 39 Cost increase - exponentially or linear ? 1 € with 6% yield over 100 years has accrued to 339 € linear cost increase instead of exponential [email protected] 40 Comparison - cost increase and interest yield Prediction of cost increase to 50 years (2060) 1200.00 1000.00 800.00 Building price index housing Consumer price index Standard wage index Building price index high-building Building price index bridge Building price index mean value 2010 600.00 400.00 200.00 0.00 1960 1980 2000 2020 2040 2060 2080 Interest yield trend 4.000 € 0% 14.000 € Sum Supply Cleaning Maintenance Repair Material [email protected] 4% 41 Cumulativeness yield essential ?? Jesus Christ’s bank account with 1,0 € after 201235a years 5a 30a2012= 494.998.691 € interest yield 100€ 200€ 1% → 1,0*1,01 interest yield 4% → 1,0*1,042012= 18,66733 € → 30a 5a 18.667.178.019.592.100.000.000.000.000.000.000 € 100€ 200€ 18.667.17827 EUR → time of investment equal !! → time of investment essential !! [email protected] 42 Accuracy of the model ? LCC Model Data on demand of investor Literature Calculative approach Investor experience Decision support (floor covering) Research in progress [email protected] 43 Calculation model LCC Rail 1 2 3 4 5 6 LCC Railway - existing problem Abrasion of railway not clearly definable Different investigation for metro and tram Decisive impact-factors on LCC unknown [email protected] 45 Focus of research Influences of railway alignment (curve radius, shunting switches etc.) Internal influences: • number of passengers • number of lines on the same route • type of carriages used on the route (lowfloor/high-floor carriages) External influences (road traffic) Analysis of RAMS-parameter [email protected] 46 1 Conclusion 2 3 4 5 6 • • • • • • • • Life cycle cost research is a up-to-date task Budgeting for building construction is usual Budgeting for maintenance is not usual Investments in maintenance and repair are not sexy but extremely necessary Huge data bases exist but data allocation is missing Public infrastructure companies seek for anticipatory budget planning Scientific confirmed data and cost are required There is still a lot of research work to be done [email protected] 48 УАСГ- гр.София БЛАГОДАРЯ ЗА ВНИМАНИЕТО! O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl Institute of Interdisciplinary Construction Process Management Vienna University of Technology