Transcript Folientitel

Research report on
Life Cycle Cost Calculation
O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl
Institute of Interdisciplinary Construction Project Management
Faculty of Civil Engineering
Vienna University of Technology
Университет по архитектура, строителство и геодезия (УАСГ)
2012-11-14
Content
1. Introduction
2. Calculation model LCC Bridge
3. Calculation model LCC Window
4. Calculation model LCC Metro station
5. Calculation model LCC Grooved Rail
6. Conclusion
[email protected]
1
2
Introduction
3
4
5
6
Life cycle cost
• Life cycle divided in phases - periods
• Holistic perception of cost trends over
the whole expected service life
• Cost groups during life cycle
o
o
o
o
o
Planning costs
Building costs
Cost of maintenance during utilisation
Unexpected costs (optional)
Cost of demolition at end of life cycle
[email protected]
4
Example of life cycle phases
Planning phase
Construction phase
Utilisation phase
Demolition phase
Life cycle
[email protected]
e.g.
e.g.
e.g.
e.g.
e.g.
5 years
3 years
70 years
2 years
80 years
5
Current targets of optimisation
• Predominant investment during
construction phase
• Less investment during utilisation
• Usual focus on optimisation for
construction phase
• Construction cost are only reliable
cost available
• Hence construction cost are reference
base of further cost calculation
[email protected]
6
Planning strategy
• Parameters for choice of system, quality
of material and construction
• Parameters impact level of expense
during utilisation phase decisively
• Targets of strategic planning of structure
at budgeting of sustainable objects:
 to aspire maximum of service life
 to aim for minimum of costs
 to meet function without restriction
[email protected]
7
Sustainability and life cycle
 Sustainability just a buzzword ??
 Keeping house sustainable – when
following the philosophy of 3P
• Sustainability is serving people
 People
• Conserving living environment for the
next generation
 Planet
• Sustainable projects must earn money
 Profit
[email protected]
8
Structure of user specific cost
• Acquisition cost
– Financing cost
– Total cost
• Follow-up costs
– Utilisation cost
•
•
•
•
•
•
Capital cost
Capital consumption
Taxes and dues
Administration cost
Operating expenses
Maintenance cost
– Demolition cost
[email protected]
9
Life cycle cost calculation
• Life cycle cost are calculated for one
single life span
• Simplified calculation of LCC with only 3
input parameters:
o CC [€] .. construction cost
o m [a] .. theoretical service life
o p [%] .. percentage of building cost CB
• Calculation with
 final value (accumulated to future)
 present value (discounted to present)
[email protected]
10
Final value – present value
Final (future) value calculation - accumulated
V
final(future )
final
VMaintenanc
e
V
present (cash)
* 1  z   V present (cash) * q Δt
Δt
q Δt  1
 Vannual Maintenance 
q 1
Present (cash) value calculation - discounted
V present
future
1
V
 V final 
 Δt
Δt
q
1  z 
present
VMaintenanc
e
q Δt  1 1
 Vannual Maintenance 
 Δt
q 1 q
[email protected]
11
Roman arched bridge across river Tajo in Alcántara / Spain
1
Calculation model
LCC Bridge
2
3
4
5
6
Aim of Research
• Computer program for LCC calculation
• Variables used as multiplying factors for
• Theoretical utilization time
• Percentages of annual maintenance cost
• Two calculation models depending on appliance
• Life cycle model with defined life span
• LCC calculation with final value
• LCC calculation with present value
• Redemption model
• presupposing unlimited life span and maintenance
[email protected]
13
Program targets
• Creation of a consistently applicable tool
for calculation of life cycle cost of a single
bridge
• Desired possibilities of application:
•
•
•
•
•
•
Comparison of bridges
Comparison of variants
Optimisation of planning process
Checking of costs
Redemption → change of upholder
Leasing of bridges
[email protected]
14
Matching coefficients
• Adaption of tabular values of redemption
guideline using matching coefficients for
special cases:
o Variance of construction guidelines
o Exceeding of normative defaults
o Consideration of new material technology
o Experimental projects
o Accreditation of construction elements
o Assessment of alternative offers
• Quality criteria for planning bridges
o Adaptability for road bridges
o Additional criteria
[email protected]
15
Key table of redemption guideline
1
2
3
4
5
6
Bauliche Anlagen
theoretische Nutzungsdauer m und %-Satz der jährlichen Unterhaltungskosten p
Unterbau
Widerlager, Flügelwände, Pfeiler, Stützen, Pylone (jeweils inkl. Gründung)
1.1 aus Mauerwerk, Beton, Stahlbeton
1.2 aus Pfahlwänden, Schlitzwänden
1.3 aus Stahlspundwänden
aus Stahlspundwänden ohne Korrosionsschutz
aus Stahlspundwänden mit Korrosionsschutz
1.4 aus Stahl
1.5 aus Holz
Überbau: Tragkonstruktionen (Balken, Platten, Bögen, Kastenquerschnitte)
2.1 aus Stahlbeton
2.2 aus Spannbeton
aus Spannbeton mit internen Spanngliedern
aus Spannbeton mit externen Spanngliedern
2.3 aus Stahl
2.4 aus Stahl-Beton-Verbundkonstruktionen
Stahltragwerke mit Betonplatte
Walzträger in Beton
Stahlträger in Beton mit Doppelverband (z.B. Preflexträger)
2.5 aus Holz
für Geh- und Radwege ohne Schutzdach
für Geh- und Radwege mit Schutzdach
für Straßen
Rahmenartige Tragwerke (einschl. Gründungen)
Geschlossene Rahmen, unten offene Rahmen, vergleichbare Rahmenkonstruktionen
3.1 aus Stahlbeton
3.2 aus Spannbeton
3.3 aus Stahl
Gewölbe (einschl. Gründungen)
4.1 Mauerwerk, Beton
4.2 Stahlbeton
Wellstahlrohre einschl. Flügelwände und Gründungen
Ausrüstung
6.1 Ausrüstung C1: umfasst 30 % der gesamten Ausrüstungskosten
[email protected]
6.2 Ausrüstung C2: umfasst 70 % der gesamten Ausrüstungskosten
m [a]
p [%]
110
90
0,5
0,5
50
70
100
50
0,6
0,5
0,8
2,0
70
0,8
70
70
100
1,3
1,1
1,5
70
100
100
1,2
0,8
0,5
40
50
40
2,5
2,0
2,5
70
70
100
0,8
1,2
1,5
130
110
70
0,6
0,5
0,8
20
30
1,5
1,2
16
Matching coefficient ► durability of structure
Negative impact on structure may require adjustment
of concrete quality.
• Tabular values for concrete cover dconcrete = 3,5 cm (usual)
mconcrete  70 Years pconcrete  0,8 % cost
km  1,00
k p  1,00
• Increase of concrete cover to 4,0 cm (6,0 cm) results in
 higher durability
 more concrete and reinforcement
 positive impact (life span)
 negative impact (cost)
mconcrete  70 years
pconcrete  0,8 % cost
k m new  1,10
k p new  0,85
mconcrete new  70*1,10  77 years
pconcrete new  0,8 * 0,85  0,68 % cost
[email protected]
17
Calculation model LCC Bridge
• Comparison of different bridges
• Commitment of parameters
• Fixed interest rate of capitalisation 4 % p.a.
• Fixed values depend on structure and
construction
• theoretical service life (life span) m [a]
• annual maintenance cost CaM → percentage
p [%] of building cost CB = CC + CAC
[email protected]
18
Construction cost CC
• Calculation based on
CONSTRUCTION COST CC 
only reliable well-established value
• Construction cost CC contain:
• Production cost of construction units
• Related miscellaneous works
• Clearance of traffic, site protection
• Generation of execution documents, plans
• Difficulties for third parties
[email protected]
19
Calculation with final value method
LCC Bfv  C B * q m  CC 1,10  q m
LCC Mfv  CaM
qm 1
qm 1

 CC 1,10  p 
q 1
q 1
LCC Dfv  C D  CC  0,22
fv
fv
fv
LCC

LCC

LCC

LCC

B
M
D
fv
Building cost CB = CC + CAC = CC* 1,10
Administration cost CAC = 0,10 * CC
Annual maintenance cost CaM = CB * p = CC*1,10 * p
Dismantling cost CD = CDem + CAD = 0,20 * CC + 0,10 * CDem = CC* 0,22
[email protected]
20
Screen shot examples of cost schedule
schedule of interest cost
of equipment
interest cost
cost schedule
sum of costs
construction cost
construction cost
annnual maintenance cost
annual maintenance cost
demolition cost
demolition cost
no-interest cost
schedule of no-interest
cost of main structure
[email protected]
schedule of no-interest
cost of equipment
schedule of total
interest cost
21
Report of results
Life cycle cost model
results
pdf.report data
graphics
data back-up
present
value
1953
Final
value
2023
graphic data
data setting
[email protected]
22
Net weight
Building movement
Outside temperature,
rain, wind, sun, noise
Window movement
Calculation model
LCC Window
Room temperature
humidity
1
2
3
4
5
6
Windows in municipal housing
 Life cycle consideration is strongly attracting notice
 Window  critical part of the building shell
 Alu-material  light, stiff, bearing, easy recycling
 Coating  long-lasting surface free of maintenance
 Little maintenance only on changing parts
 Intensive mechanical load  rough usage in social
flats  rapid mechanical wear
 Durability = service life + behaviour of user
 Life cycle consideration  decisive for evaluation of
sustainability and intrinsic value
[email protected]
24
Acid laboratory test of 3 window types
Tested frame material of windows: aluminium
French window
single frame
Window
single frame
Casement window
double frame
[email protected]
25
Calculation basis
Life cycle period in years
Tested windows
Material
Base + frame + glass
Hold + fittings
Gaskets
Controlling period
Window single frame
French window single frame
Casement window double frame
Aluminium
Wood
Wood-Alu
Plastic
60
40
25
60
40
40
25
40
50
40
25
50
25
25
25
25
[email protected]
26
LCC single frame window alu versus plastic
positions
ALUMINIUM-window
single frame
Base + frame + glass
Hold + fittings
Gaskets
Controling period/Σ
useful
life
[years]
60
40
25
60
positions
PLASTIC-window
single frame
Base + frame + glass
Hold + fittings
Gaskets
Controling period/Σ
useful
life
[years]
25
25
25
25
cost
[€]
644
91
59
794
cost
[€]
411
91
59
561
Change spare parts:
wages (work) &
material (equipment) all-inclusive.
cost appearance
cost
ALUMINIUM-window
no-interest
single frame
[€]
Base + frame + glass
644
Equipment (Fr+HoF+Ga)
359
Wages (60 €/action)
180
Maintenance (0,25%/year)
119
Sum after 60 years
1.302
Present value
794
LCC
interest rated
[€]
6.775
2.097
457
491
9.820
934
cost appearance
PLASTIC-window
single frame
Base + frame + glass
Equipment (Fr+HoF+Ga)
Wages (60 €/action)
Maintenance (2,5%/year)
Sum after 60 years
Present value
LCC
interest rated
[€]
6.554
2.392
326
3.471
12.743
1.211
[email protected]
cost
no-interest
[€]
1.233
450
120
841
2.645
561
27
LCC single frame window - ALU
First change of window after 60 years
Equipment:
Fittings, hold (40 a), gaskets (25 a)
[email protected]
28
Comparison of frame-material
LCC of single frame French window
Wood
Plastic
Wood-Alu
26
ALU
[email protected]
29
LCC on example of a municipal flat (all material)
Typical flat with 5 single frame windows and 1 single frame French window
Wood
Plastic
ALU
Wood-Alu
26
[email protected]
30
Future requirements on windows
• Guidelines are tightening requirements on windows
• Future coefficient of heat transmission is very low:
•
•
•
•
UW  1,0 W/m²K
Future increase of window weight expected because
of multiple glazing and rising thickness of glass.
Modern alu-windows are high quality systems with
• Good heat insulation
• Long service life
• Practically free of maintenance
Durability depends on combination
of service life and user behaviour.
Window material aluminium expecting to
meet stronger future requirements reliably.
[email protected]
31
Calculation model
LCC Metro station
1
2
3
4
5
6
Metro cost structure / maintenance
[email protected]
33
Cost composition LCC
€

m
²
a



LCCcost category quantity[ m²] * LCC
Dimension: m1, m², m³, to, piece, etc.
[email protected]
34
Prediction of quantity
 Whereof is surface depending on?
 Impact of structure on design …
•
•
•
•
Upper level - deep level
Crossing station
Central platform - lateral platform
…
 Auxiliary means for quantity prediction
•
•
•
•
Comparison of existing stations
Statistical analysis
Design guidelines
Expert experience
[email protected]
35
Methods of quantity prediction
Example - comparative analysis
5
12
Linien Station
Fläche
Bahnsteig
Gang
1 Aderklaaer Straße
3.744,42
1.057,70
1.309,77
1 Alser Straße
2.791,00
703,57
37,85
1 Alte Donau
3.056,06
1.102,00
575,00
1 Alt Erlaa
2.238,00
857,00
78,00
1 Am Schöpfwerk
2.191,00
1.052,00
50,00
1 Aspernstraße
4.793,64
1.262,12
168,54
1 Braunschweiggasse
1.728,00
760,00
275,00
1 Burggasse
1.661,00
1.076,00
3,00
1 Donauinsel
2.721,00
760,00
1.199,00
1 Donaumarina
3.318,77
1.244,12
194,48
1 Donauspital
3.129,83
1.013,16
106,54
1 Donaustadtbrücke
3.297,40
1.201,01
301,51
1 Dresdner Straße
3.189,00
1.168,00
642,00
1 Enkplatz
7.173,11
898,00
2.332,53
1 Erdberg
4.101,00
989,00
362,00
1 Erlaaer Straße
1.680,00
828,00
52,00
100%
1
Floridsdorf
10.039,00
1.620,00
2.870,00
80%
1 Friedensbrücke
2.645,00
1.522,00
32,00
60%
1 Gasometer
3.862,97
900,00
1.151,00
40%
1 Großfeldsiedlung
3.845,54
1.000,55
1.349,75
20%
1 Gumpendorfer Straße
1.630,00
889,00
15,00
10%
Handelskai
6.062,00
1.446,00
640,00
1 Hardeggasse
3.153,00
1.067,04
139,56
1 Heiligenstadt
6.329,68
1.740,00
1.126,00
1 Herrengasse
3.166,00
928,00
675,00
1 Hietzing
2.309,00
994,00
96,00
1 Hütteldorf
9.941,47
1.342,00
767,00
Fläche in m²
1 Hütteldorferstraße
7.265,35 Area
1.231,00
in m² 1.361,00
1 Jägerstraße
4.377,00
1.118,00
1.273,00
1 Johnstraße
10.444,00
1.145,00
1.941,00
1 Josefstädter Straße
1.491,00
668,00
16,00
1 Kagran
6.548,10
1.006,00
764,18
15
20
21
24
26
27
28
33
Halle
Lager/Archiv
Leerraum
Passage
Sanitärraum
Stiege
Technikraum
Sonstiges
0,00
100,61
102,66
167,37
14,51
127,89
0,00
65,07
0,00
0,00
43,37
0,00
180,00
420,64
27,36
0,00
33,00
354,00
164,00
40,00
0,00
138,00
21,00
155,00
274,00
193,00
0,00
0,00
11,00
266,00
0,00
167,09
0,00
670,05
38,39
0,00
113,00
87,00
0,00
0,00
12,00
104,00
0,00
13,00
0,00
0,00
12,00
288,00
233,00
90,00
0,00
0,00
40,00
125,00
0,00
38,08
0,00
403,43
0,00
136,84
0,00
72,70
0,00
281,38
10,04
0,00
0,00
68,08
0,00
251,46
12,64
39,96
93,00
349,00
0,00
0,00
17,00
150,00
0,00
694,00
227,15
523,00
23,86
560,69
0,00
85,00
0,00
418,00
72,00
262,00
159,00
197,00
0,00
0,00
11,00
130,00
0,00
1.287,00
153,00
1.830,00
239,00
297,00
35,00
184,00
20,00
0,00
21,00
111,00
256,00
20,00
0,00
0,00
25,92
243,00
196,84
40,66
132,49
0,00
13,56
126,40
146,00
54,00
0,00
0,00 value
27,00
Statistical
mean
of floor196,00
space
1.090,00
125,00
996,00
0,00
66,00
489,00
0,00
54,63
0,00platform
265,46
central
1.167 m²11,31
(+ 30%) 0,00
Mittelbahnsteig
1.353,00
562,00
0,00
260,00
57,00
72,00
lateral
platform
899
m²
Seitenbahnsteig
0,00
36,00
0,00
358,00
20,00
203,00
258,00
191,00
54,00
0,00
38,00
134,00
164,00
839,00
230,00
308,00
123,00
261,00
33,00
472,00
107,00
1.063,00
34,35
349,00
261,00
642,00
0,00
0,00
14,00
288,00
285,00
1.011,00
80,00
541,00
126,00
685,00
143,00
61,00
0,00
0,00
37,00
277,00
[email protected]
413,00
1.538,30
12,00
0,00
137,52
170,00
0 - 400
400 - 500
500 - 600
600 - 700
700 - 800
800 - 900
900 - 1.000
1.000 - 1.100
1.100 - 1.200
1.200 - 1.300
1.300 - 1.400
1.400 - 1.500
1.500 - 1.600
1.600 - 1.700
1.700 - 1.800
1.800 - 1.900
1.900 - 2.000
2.000 - 2.100
2.100 - 2.200
2.200 - 2.300
2.300 - 2.400
Einzelstationen
Example - statistic analysis:
Lateral platform – central
platform
Bahnsteig
812,44
170,71
341,00
345,00
287,00
2.018,70
274,00
113,00
274,00
1.228,97
1.381,09
1.398,19
659,00
1.744,70
1.080,00
256,00
1.347,00
406,00
1.002,25
923,84
162,00
required
992,00
1.472,64
988,68
702,00
426,00
565,00
1.532,00
678,00
4.167,00
132,00
1.261,00
51,47
1.770,43
23,06
440,00
58,00
468,75
103,00
156,00
0,00
72,85
264,92
24,55
111,00
169,18
833,00
47,00
396,00
314,00
264,80
61,45
141,00
218,00
142,36
171,00
244,00
118,00
5.342,47
1.083,00
103,00
463,00
157,00
1.246,10
268 m² exceeded floor space required
36
Project advancement
Modelling step 1 – quantity estimation
Project idea
Comparison
with existing
stations
1. Concretion
Statistical
analysis
2. Concretion
Design
guidelines
Basic design
Existing
surfaces
[email protected]

37
Model step 2 – cost development
Cost increase
Interest yield
Prediction required
[email protected]
38
Price index – exponential increase ?
Standard wage index
1000
y = 18.896x - 37075
R² = 0.9936
Building price index
8.00%
800
6.00%
600
4.00%
400
2.00%
200
0
0.00%
1960 1970 1980 1990 2000 2010 2020
300.00
250.00
10.0%
y = 4.8147x - 9422
R² = 0.9877
8.0%
200.00
6.0%
150.00
4.0%
100.00
2.0%
50.00
0.00
1970
1980
1990
2000
2010
0.0%
2020
Wholesale price index
y = 1.65x - 3149.9
R² = 0.8318
200
10.0%
150
5.0%
100
0.0%
50
-5.0%
0
1970
1980
1990
2000
2010
No exponential increase
-10.0%
2020
[email protected]
39
Cost increase - exponentially or linear ?
1 € with 6% yield over 100
years has accrued to 339 €
linear cost increase instead of exponential
[email protected]
40
Comparison - cost increase and interest yield
Prediction of cost increase to 50 years (2060)
1200.00
1000.00
800.00
Building price index housing
Consumer price index
Standard wage index
Building price index high-building
Building price index bridge
Building price index mean value
2010
600.00
400.00
200.00
0.00
1960
1980
2000
2020
2040
2060
2080
Interest yield trend
4.000 €
0%
14.000 €
Sum
Supply
Cleaning
Maintenance
Repair
Material
[email protected]
4%
41
Cumulativeness yield essential ??
Jesus Christ’s bank account with 1,0 € after 201235a
years
5a
30a2012= 494.998.691 €
interest
yield
100€
200€ 1% → 1,0*1,01
interest yield 4% → 1,0*1,042012= 18,66733 € →
30a
5a
18.667.178.019.592.100.000.000.000.000.000.000
€
100€
200€
18.667.17827 EUR
→ time of investment equal !!
→ time of investment essential !!
[email protected]
42
Accuracy of the model ?
LCC Model
Data
on demand of investor
Literature
Calculative approach
Investor experience
Decision support
(floor covering)
Research in progress
[email protected]
43
Calculation model
LCC Rail
1
2
3
4
5
6
LCC Railway - existing problem
 Abrasion of railway not clearly definable
 Different investigation for metro and tram
 Decisive impact-factors on LCC unknown
[email protected]
45
Focus of research
 Influences of railway alignment (curve
radius, shunting switches etc.)
 Internal influences:
• number of passengers
• number of lines on the same route
• type of carriages used on the route (lowfloor/high-floor carriages)
 External influences (road traffic)
 Analysis of RAMS-parameter
[email protected]
46
1
Conclusion
2
3
4
5
6
•
•
•
•
•
•
•
•
Life cycle cost research is a up-to-date task
Budgeting for building construction is usual
Budgeting for maintenance is not usual
Investments in maintenance and repair are not
sexy but extremely necessary
Huge data bases exist but data allocation is
missing
Public infrastructure companies seek for
anticipatory budget planning
Scientific confirmed data and cost are required
There is still a lot of research work to be done
[email protected]
48
УАСГ- гр.София
БЛАГОДАРЯ
ЗА ВНИМАНИЕТО!
O.Univ.Prof. Dipl.-Ing. Dr.techn. Hans Georg Jodl
Institute of Interdisciplinary Construction Process Management
Vienna University of Technology