Transcript Slide 1
Dynamic Phase Separation in Manganites Luis Ghivelder IF/UFRJ – Rio de Janeiro Main collaborator: Francisco Parisi CNEA – Buenos Aires Where was this research carried out ? Low Temperatures Laboratory, Physics Institute Federal University of Rio de Janeiro Extraction Magnetometer - 9 T PPMS VSM – 14 T SQUID - 6 T Cryogenics MR (%) Resistivity (a.u.) Why are manganites so interesting ? La0.67Ca0.33MnO3 Started with 0.06 H=0 2T 0.04 0.02 9T CMR 60 9T 40 2T 20 160 Colossal Magnetoresistance 200 240 T (K) 280 1140 citations ! Complexity in Manganites: Phase Diagram of La1-xCaxMnO3 5/8 3/8 Temperature (K) 4/8 x = 1/8 7/8 CO FM FI CAF AF CO 0 0.0 0.1 0.2 0.3 0.4 0.5 Ca x 0.6 0.7 CAF 0.8 0.9 1.0 Main ingredient for understanding the Manganites competition between Ferromagnetic metallic eg t2g Antiferromagnetic Charge ordered insulating and Mn3+ Mn4+ Phase Separation (PS) Micrometer or Nanometer scale Qualitative (naïve) picture FM metallic AFM-CO insulating H H = 0 Phase Separation CMR Pr doped manganites: Pr1-xCaxMnO3 Prototype compound for studying Phase Separation in manganites La5/8-xPrxCa3/8MnO3 CO FM CAF AF CAF La5/8-xPrxCa3/8MnO3 H=1T x = 0.1 x =La0.1 rich x = 0.4 M(B / Mn) B 1 0.1 Phase T (FM) Separation C FCC T x = 0.6 Pr rich (CO) x =CO0.3 T (AFM) N FCW 0.6 0 50 100 150 T(K) 200 250 300 x = 0.4 La0.225Pr0.40Ca0.375MnO3 FCC curve mostly FM atstate low temperatures ZFC curve metastable frozen at low temperatures H=1T TC TB TCO TC M(B / Mn) Blocking temperature FCW 1 TN 0.1 ZFC FCC FCC 0 50 FM 100 150 200 250 T(K) AFM-CO CO Magnetic Glass 300 PM Correlation between magnetic and transport properties H=1T M (B /Mn) 1.2 ZFC FCC FCW 0.8 virgin magnetization 0.4 (.cm) 0.0 10 4 10 3 10 2 10 1 10 0 0 50 100 T (K) 150 Dynamics of the phase separated state Relaxation measurements H = 1 T, FCC M (B / Mn) 0.9 2 hours 0.6 0.3 0.0 0 50 100 150 T (K) 200 250 Thermal cycling H = 1 T, ZFC M (B /Mn) 0.9 0.6 0.3 0.0 0 20 40 T (K) 60 80 ZFC Relaxation 1.8 20 K ZFC, H = 1 T 1.2 1.6 M/M(0) 0.6 1.4 50 K 1.2 10 K 1.0 80 K 0.3 0.0 0 20 40 60 80 0 100 T (K) 2000 4000 6000 8000 t (sec) 1.5 S (a.u.) M(B) 0.9 M (T , t ) S (T ) ln(t / t0 1) M 0 (T ) 1.0 Magnetic Viscosity S(T) 0.5 0.0 0 20 40 60 T (K) 80 100 Phenomenological model Collective behavior Hierarchical dynamic evolution evolution is described in terms of a single variable most probable event happens before the lesser probable one Time evolution through a hierarchy of energy barriers, which separates the coexisting phases Normalized FM fraction x (T ) Proportional to the Magnetization Conventional activated dynamic functional with state-dependent energy barriers. ( xeq x) dx v0e dt | xeq x | xeq (T , H ) Equilibrium FM fraction U ( x, H ) T Arrhenius-like activation Diverging energy barriers U (H ) U ( x, H ) | xeq x | Linear from xeq (T ) xeq (80K ) 0 until xeq (20K ) 1 Numerical simulation x(t dt) x(t ) [v e 0 0.3 FM fraction x (T) equilibrium FM fraction FCW 0.2 FCC 0.1 ZFC 0.0 0 30 60 T (K) 90 U ( x , H ,T ) T Solid line: numerical simulation ]dt Melting of the AFM-CO state 4 Homogeneous and irreversible FM state T=6K M(B / Mn) 3 Metamagnetic transition 2 1 0 0 10 20 30 H (kOe) 40 50 60 Alignment of the small FM fraction Abrupt field-induced transition at low temperatures Avalanche, Jumps, Steps M (B/Mn) 4 At very low temperatures 3 2 1 T = 2.5 K 0 C (mJ/molK) 23 Ultrasharp metamagnetic transition 22 21 20 0 10 20 30 H (kOe) 40 50 Temperature variation of the magnetization jumps M ( / Mn) 3 2 2K 3K 4K 5K 6K 1 20 25 H (kOe) 30 35 Magnetization jumps Relaxation T = 2.5 K T = 2.5 K 2 3 1 20 0.44 T = 2.5 K 22 24 1 H = 23.6 kOe enlarged view 2 H (kOe) 26 M (/Mn) M (/Mn) M (/Mn) 3 28 H = 24.0 kOe 0.40 30 H = 23.8 kOe H = 23.6 kOe 2 4 0.36 t (hour) 6 6.4 6.8 t (hour) 7.2 Spontaneous metamagnetic transition T = 2.5 K M (/Mn) 3 H = 23.6 kOe 2 1 7.15 7.20 7.25 7.30 t (hour) 7.35 Open Questions Why it only happens at very low temperatures ? What causes these magnetization jumps ? Martensitic scenario vs. Thermodynamical effect Magnetocaloric effect Huge sample temperature rise at the magnetization jump ZFC, H = 1 T 1.2 25 0.9 T(K) M(B) 20 0.6 0.3 15 0.0 0 20 10 40 60 80 100 T (K) 5 0 14 16 18 20 22 24 26 H (KOe) k heat generated when the non-FM fraction of the material is converted to the FM phase Nd based manganite La5/8-xNdxCa3/8MnO3 , x = 0.5 2.5 KK TT== 2.5 21 4 12 2 9 8.0 T = 66 K 0 20 40 H (kOe) 60 7.5 3 80 0 7.0 2 6.5 6.0 0 0 20 40 H (kOe) 60 80 Tsample (K) 4 0 M (B/Mn) M (B/Mn) 15 Tsample (K) 18 Our model Microscopic mechanisms promote locally a FM volume increase, which yield a local temperature rise, and trigger the avalanche process. The entity which is propagated is heat, not magnetic domain walls, so the roles of grain boundaries or strains which exist between the coexisting phases are less relevant PS and frozen metastable states are essential ingredients for the magnetization jumps Constructing a ZFC phase diagram M vs. T M (B/Mn) 3 2 1 0 0 30 60 90 120 8 kOe 10 11 12 13 14 15 16 17 183 19 20 22 2 24 26 28 150 1 M vs. H 2.5 K 8K 15 K 40 K 60 K 70 K 90 K 106 K 140 K M (B/Mn) 4 T (K) 0 0 20 40 H (kOe) 60 H-T phase diagram FM homogeneous PS PS dynamic AFM-CO A different compound, with PS at intermediate temperatures x = 0.3 La0.325Pr0.30Ca0.375MnO3 H=0 0.8 0.6 5 0.4 Hth 0.2 M (B/Mn) 0.0 H = 60 Oe 0.1 0.01 SR [d(ln)/dt] 0 H = 4 kOe 1.002 -5 R/R(0) (.cm) Zero field resistivity, after applying and removing Hdc -10 -15 1E-3 0 50 100 150 T (K) 200 250 H = 2 kOe 0.998 H = 0.5 kOe H=0 0.996 0 T = 110 K 300 -20 H = 3 kOe 1.000 0 2 4 2 4 6 H (kOe) 6 t (min) 8 8 10 10 FM fraction x 1.0 0.8 0.6 Magnetic field tuned equilibrium FM fraction 0.4 0.2 equilibrium FM fraction measured FM fraction 0.0 SM [d(lnM)/dt] 0.15 0.10 0.05 0.00 20 40 60 T (K) 80 100 120 Summary ZFC process in phase separated manganites: Quenched disorder leads to the formation of inhomogeneous metastable states Dynamic nature of the phase separated state: Large relaxation effects are observed in a certain temperature window Equilibrium ground state is not reached in laboratory time References of our work