Transcript Document
Making the case for coupled chemistry, climate, biogeochemistry simulations E.A. (Beth) Holland Chemistry-Climate Workshop Santa Fe, NM, Feb. 10-12 Thank you! Roadmap • Carbon cycle • Carbon/Nitrogen Cycle • CN Chemistry • CN Chemistry Climate • CN Chemistry Climate Biogeochemistry Summary for Policymakers, IPCC 2001 Table 3.1: Global CO2 budgets (in Pg C/yr) based on intra-decadal trends in atmospheric CO2 and O2. IPCC 2001, Prentice et al, Chapter 3 Atmospheric increase Emissions (fossil fuel, cement) Ocean-atmosphere flux Land atmosphere flux* Land use change Residual terrestrial sink 1980s 1990s 3.3 ± 0.1 5.4 ± 0.3 3.2 ± 0.1 6.3 ± 0.4 -1.9 ± 0.6 -0.2±0.7 -1.7 ± 0.5 -1.4±0.7 1.7 (0.6 to 2.5) NA -1.9 (-3.8 to 0.3) NA Positive values are fluxes to the atmosphere; negative values represent uptake from the atmosphere. The fossil fuel emissions term for the 1980s (Marland et al., 2000) has been slightly revised downward since the SAR. Error bars denote uncertainty (± 1s), not interannual variability, which is substantially greater. photosynthesis & respiration Atmosphere O2 NO2 CO2 H2O N2 NO x NOy O2 CO2 CO2 O2 NO, N2O Pedosphere Norg NO3NH4+ Norg soil (microbes, roots) plants etc. Biosphere (C, H2O, N…) Coupling C and N Vegetation Type Tropical rainforest Fraction wood 0.5 C:N C:N C:N microbes leaves wood 14 50 150 Temperate Evergreen forest 0.5 14 70 300 Shrubland 0.5 14 60 180 Grassland 0 10 55 0 What are the implications of N deposition for the global carbon cycle? Table 6. Comparison of Terrestrial Net CO2 Flux Estimated by Inverse Deconvolution and Our Perturbation Estimate of Terres trial Net CO2 Flux from N Deposition 90°S–16°S Equatorial 16°N–90° Global N -0.1 +0.3 -0.6 -0.5 Keeling et al. [1989] a -0.1 +0.5 -2.3 -1.9 Tans et al. [1994] a -0.2 +0.8 -2.2 -1.5 Ciais et al. [1995] b With Saturation This work -0.04 -0.11 -0.38 -0.53 IMAGES c -0.05 -0.16 -0.41 -0.62 ECHAM c -0.06 -0.13 -0.37 -0.56 GCTM c -0.04 -0.11 -0.36 -0.51 GRANTOUR c -0.05 -0.16 -0.40 -0.61 MOGUNTIA c -0.10 -0.26 -0.73 -1.09 MOGUNTIA NH + NO d x y Without Saturation This work IMAGES c ECHAM c GCTM c GRANTOUR c MOGUNTIA c MOGUNTIA NHx + NOy d Values are in units of Gt C yr-1. -0.04 -0.05 -0.07 -0.04 -0.06 -0.11 -0.12 -0.19 -0.15 -0.12 -0.20 -0.29 -0.57 -0.73 -0.73 -0.50 -0.64 -1.02 -0.73 -0.97 -0.95 -0.66 -0.90 -1.42 Wet deposition of NH4+ Dry deposition of particulate NH4+ Wet deposition of NO3- Dry deposition of HNO3 (g) Dry deposition of particulate NO3- All units kg N ha-1 y-1 Holland, Braswell, Sulzman, Lamarque submitted How does N retention vary with N deposition? Holland, Braswell and Bossdorf How does N deposition impact C storage across a range of vegetation types? Do these simulations provide any evidence of N saturation characterized by a non-linear increase in outputs relative to inputs? Coniferous Forests current N deposition N losses 4.71 Deciduous Forests Current N deposition 5.21 10X 10X Mixed Fo rests Current N deposition Shrublands Current N deposition Savannas Current N deposition Grasslands Current N deposition 10X 10X 10X 10X 29.78 32.14 4.80 30.82 1.50 10.75 8.78 55.94 5.77 39.14 N losses=gaseous losses (NO + NH3 +N2O+ nitrate leaching, kg N ha-1 y-1 Holland, Braswell and Bossdorf, in prep. NO! What’s missing? Figure 4: The correlation between NOy deposition and surface ozone concentrations predicted by IMAGES, a 3-D chemical transport model. The correlation occurs because both depend on the same sets of chemical reactions, precursors. (from Holland et al 1997, JGR Atmospheres 102:15,849-15,866). Community Land Model Dynamic Vegetation Vegetation Dynamics 0 500 1000 PPFD (molm-2s-1) g CO2g-1s-1 Root 0.3 0 -10 25 60 Temperature (C) 0 15 30 0 -1 -2 0 1500 3000 0 -10 25 60 Temperature (C) Autotrophic Respiration Temperature (C) Litterfall 0 500 1000 Heterotrophic Respiration Ambient CO2 (ppm) Foliage Water Potential (MPa) g CO2g-1s-1 0 -10 25 60 Temperature (C) 6 4 2 0 6 4 2 0 g CO2g-1s-1 Growth Respiration Sapwood 0.01 0 1 2 Vapor Pressure Foliage Deficit (Pa) Nitrogen (%) Bonan 2002 Nutrient Uptake 8 1 0 15 30 Temperature (C) Relative Rate 6 4 2 0 Foliage 0.5 Relative Rate g CO2g-1s-1 g CO2g-1s-1 Photosynthesis g CO2g-1s-1 Ecosystem Carbon Balance 1 0 0 100 Soil Water (% saturation) Community Land Model Climate Chemistry Temperature, Precipitation, Radiation, Humidity, Wind CO2, CH4, N2O Ozone, Aerosols Heat Moisture Momentum CO2, CH4 N2O, Dust, Volatile organic compounds Element Cycles Canopy Physiology Soil Processes Biogeochemistry Aerodynamics Minutes-To-Hours Biogeophysics Water Integrator Of Processes And Time-Scales Energy Surface Fluxes Soil water, snowpack Leaf area, leaf nutrition Ecosystems Watersheds Days-To-Weeks • Evapotranspiration • Interception • Infiltration • Runoff • Snowmelt Physiology Phenology • Carbon uptake • Bud break • Leaf drop • Carbon loss • Nutrient uptake • Allocation Ecosystems • Litterfall • Decomposition • Mineralization • Soil chemistry Species composition Ecosystem structure Nutrient availability Vegetation Dynamics Years-To-Centuries Plant Ecosystem Demography Processes Open Site Bonan (2002) Ecological Climatology. Cambridge Univ. Press Old-Growth Forest Disturbance Fires Hurricanes Land use Invasive species BASE CASE EMISSIONS from MOZART 2 (JULY) Isoprene Flux NO flux Weidenmyer, C, XX Tie, S. Levis, A. Guenther, and EA Holland What is the impact of land use change on global O3 concentrations? Change in Concentration (ppbv) •For 25% of each grid cell in the Amazon basic, isoprene flux is increased by a factor of 8, replacement with oil palm plantations •For 25% of each grid cell in the northwest U.S., isoprene flux is increased by a factor of 30, replacement with Poplar plantations % Change Weidenmyer, C, XX Tie, S. Levis, A. Guenther, and EA Holland The GLOBAL N CYCLE Putting the pieces together Stomatal conductance Sellers et al 1997, Science N interactions • Dickinson, R.E., J. A. Berry, G. B.Bonan, G. J. Collatz, C. B. Field, I. Y. Fung, M. Goulden, W. A. Hoffman, R. B. Jackson, R. Myneni, P. J. Sellers and M. Shaikh, 2001: Nitrogen Controls on Climate Model Evapotranspiration. J Clim., 15, No. 3, 278-295. RESULT: Improvements in models ability to capture the seasonal cycle of temperature. What if? We included N, CO2 and O3 feedbacks on stomatal conductance and the influence of stomatal conductance on dry deposition? Comparison of the five models: dry deposition velocities cm s-1 1 ECHAM1 GCTM2 GRANTOUR3 IMAGES4 MOGUNTIA5 O3 0.4 n/a 0.6 0.4 grasslands 0.5 savannah 1 tropical forests 0.6 other forests 0.35 NO 0.04 0.25 0.10 0.6 * Vd for O3 0.40 NO2 0.25 0.25 0.50 0.6 * Vd for O3 0.25 HNO3 2.0 1.5 1.0 2.0 2.0 Roelofs and Lelieveld 1995 Kasibhalta et al. 1991, 1993; Levy et al. 1996 a & b; Moxim et al. 1996 3 Penner et al. 1991; 1993 4 Müller 1992; Müller and Brasseur 1995; Lamarque pers. comm. 5 Dentener and Crutzen 1993 2 Deposition Velocity Calculation Fc = Vd * C Fc- flux, Vd- deposition velocity, Cconcentration Vd =(Ra + Rb + Rs) –1 Ra-aerodyamic resistance, from CLM Rb-quasi-boundary layer resistance, from CLM Rs-surface resistance approach of Ganzeveld (1995, 1999) + Wesley and Hicks 2000 HNO3 dry deposition (kg N ha-1 y-1) Holland, EA, JF Lamarque, J Sulzman, R. Braswell, submitted, Global Biogeochemical Cycles .0 0.0 0.30 0.61 0.75 1.51 QuickTime™ and a YUV420 codec decompressor are needed to see this picture. conterminous United States, total measured N deposition= 4.54 Tg N y -1 22% 28% NO3-(aq) NO3-(aq) NOy (g+particulate) NOy(g+particulate) + NH4 (aq) NH4+(aq) NH4+(particulate) NH4+(particulate) Global NOy deposition budget, from TM3, total N deposition=46.4 Tg N y-1 24% 26% 8% 5% NOx (aq) NOx(g) HNO3(g) HNO3 (g) 14% 6% HNO3(aq) HNO 3 (aq) organic nitrates (g) Organic Nitrates (g) PAN (g) 23% Western Europe, total measured N deposition= 10.83 Tg N y -1 44% PAN (g) organic nitrates (aq) Organic Nitrates (aq) NO3-(aq) NO3-(aq) - 12% HNO3 (g)+NO3 (particulate) HNO3(g)+NO3(particulate) NO2 (g) NO2(g) 21% + NH4 (aq) NH4+(aq) 36% + 20% 11% NH4 (particulate) NH4+(particulate) N deposition partitioning for two measurement compilations (Holland et al. submitted) and one model compilation (Neff et al. 2002) Wet deposition of NH4+ Dry deposition of particulate NH4+ Wet deposition of NO3- Dry deposition of HNO3 (g) Dry deposition of particulate NO3- All units kg N ha-1 y-1 Holland, Braswell, Sulzman, Lamarque submitted photosynthesis & respiration Atmosphere O2 NO2 CO2 H2O N2 NO x NOy O2 CO2 CO2 O2 NO, N2O Pedosphere Norg NO3NH4+ Norg soil (microbes, roots) plants etc. Biosphere (C, H2O, N…) Coupling C and N Vegetation Type Tropical rainforest Fraction wood 0.5 C:N C:N C:N microbes leaves wood 14 50 150 Temperate Evergreen forest 0.5 14 70 300 Shrubland 0.5 14 60 180 Grassland 0 10 55 0 P. Thornton, NCAR/CGD, Sept. 2002 Soil NO flux Yienger and Levy NOx flux = Fw/d ( T, Aw/d) x P x CR (LAI, SAI) (ng m-2 s-1) T-soil temperature A-biome dependent coefficient w/d - distingushes between wet and dry soil fluxes for wet soils, there are 3 temperature relationships: cold ( 0-10 °C) : = 0.28 x Aw x T (a) (0.103+0.04) x T normal (10 -30 °C): = Aw x e (b) optim al (>30 °C) = 21.97 x Aw (30° substituted into b) for dry soils, there are 2 temperature relationships: cold (0-30 °) =A d x T / 30° optim al (> 30° C) = Ad P- precipitation scalar factor to adjust the flux in event of a flux depending on one of the following four states: no rain: P=1.0 sprinkle: 0.1 < rain < 0.5 cm day-1, 5 fold increase P= 11.19 x e -0.805 [day-1] x t (1< time (days) <3) shower: 0.5 < rain < 1.5 cm day-1 10 fold increase P= 14.68 x e -0.384 [day-1] x t (1< time (days) <7) heavy rain: 1.5 < rain cm day-1 15 fold increase P= 18.46 x e -0.208 [day-1] x t (1< time (days) <14) pulse yield: 1.3 Tg NOx-N y-1 Soil N gas model Model measurement comparison Parton,1, W.J., E.A. Holland,2 S.J. Del Grosso,1 M.D. Hartman,1 R.E. Martin,3 A.R. Mosier,4 D.S. Ojima,1 and D.S. Schimel2. Generalized Model for NOx and N2O Emissions from Soils. J. Geophys. Res . 106:17,403-17,419. What is the acceleration of the N cycle? How has the quantity and pattern of N deposition changed over the last 100 years? N forcing Summary for Policymakers, IPCC 2001 What does the future hold ? Compound Greenhouse gases CO2-fossil fuel CH4 N2O O3 precursors C: NMVOCs + CO N: NO x Sulfate aerosol precursors SO2 Average Range +167% +62 +44 (-28 to +405) (-24 to 137) (-19 to 148) +85% +98% (-59 to 202) (-39 to 192) -48 (-15 to Ğ72) IPCC SRES scenario emissions: % increases projected for 2100, relative to 2000 The NCAR Biogeosciences Initiative: Elisabeth Holland (Program Leader) Gordon Bonan Alex Guenther Natalie Mahowald David Schimel Britton Stephens Jielun Sun Peter Thornton 100 Net Nitrification/Net Mineralization % NO 3 -N ug/g 8 6 4 2 0 300 yr 4.1 million yr 80 60 40 20 0 300 yr 4.1 million yr N Trace Gases N2O-N and NO-N ng cm-2 h-1 Nitrate Concentration Net Nitrification (% Net Mineralization) 2.5 2 NO N2O 1.5 1 0.5 0 300 yr 4.1 million yr Abiotic controls on nitrification Regulation of NO:N2O ratio