Transcript Slide 1
Autocorrelation Hill et al Chapter 12 The nature of the problem • Time series data: – Observations follow a natural ordering through time. • Autocorrelation – The error term contains a carryover from previous shocks. – Related to, or correlated with, the effects of the earlier shocks. Violation of assumption MR4 yt 1 2 xt 2 3 xt 3 et E (et ) 0 var(et ) 2 cov et , es 0 for t s Area response for sugar cane ln At 1 2 ln Pt et yt 1 2 xt et yt 1 2 xt et yt ln At xt ln Pt Least squares estimation yˆ t = 6.111+ 0.971 xt (0.169) (0.111) R2 = 0.706 (std. errors) First order autoregressive AR(1) errors yt 1 2 xt et et et 1 vt cov(vt , vs ) 0 var(vt ) v2 E (vt ) 0 Properties of an AR(1) error Assumption: 1 1 Properties E (et ) 0 2 var(et ) e2 v 2 1 cov et , et k e2k corr(et , et k ) e2k e2e2 k Consequences of Autocorrelation • The least squares estimator is still a linear unbiased estimator, but it is no longer best. • The formulas for the standard errors usually computed for the least squares estimator are no longer correct • Hence confidence intervals and hypothesis tests that use these standard errors may be misleading. Transforming the model yt 1 2 xt et et et 1 vt yt 1 2 xt et 1 vt et 1 yt 1 1 2 xt 1 et 1 yt 1 1 2 xt 1 yt 1 2 xt yt 1 1 2 xt 1 vt yt yt 1 1 1 2 xt xt 1 vt y yt yt 1 xt1 1 xt2 xt xt 1 yt xt11 xt22 vt t Transforming the first observation y1 1 2 x1 e1 2 var(et ) e2 v 2 1 1 2 y1 1 2 1 1 2 x12 1 2 e1 y1 x11 1 x12 2 e1 11 2 1 2 x 1 e 1 e1 y1 1 2 y1 x12 1 2 x1 v2 2 var(e ) (1 ) var(e1 ) (1 ) v 1 2 1 2 2 Implementing GLS eˆt yt b1 b2 xt eˆt eˆt 1 vˆt T ˆ eˆ eˆ t 2 T t t 1 2 ˆ e t 1 t 2 Sugar cane area continued x32 x32 ˆ x22 T ˆ eˆ eˆ t 2 T t t 1 eˆ t 2 2.2919 (0.342)(2.1637) 1.5519 0.342 2 t 1 1 ln( Aˆt ) =6.164+1.007ln(Pt) y 1 ˆ y1 2 1 0.342 2 3.3673 (0.213) (0.137) 3.1642 xt*1 xt xt*2 yt yt*1 1 0.93970 -2.5868 -2.4308 3.3673 3.1642 2 0.65799 -2.1637 -1.2790 4.2627 3.1110 3 0.65799 -2.2919 -1.5519 3.7677 2.2798 4 0.65799 -2.2045 -1.4206 4.4998 3.2215 The Durbin-Watson test T H0 : 0 H1 : 0 H1 : 0 H1 : 0 d eˆ eˆ t 2 t T 2 ˆ e t t 1 2 1 ˆ t 1 2 Critical values for D-W • The distribution of d under the null depends on the values of the explanatory variables. • Critical values cannot be tabulated. • Use software to compute appropriate p-value. • Use the bounds test. – Define two new stats which do not have a distribution dependent on the data. – dL < d < du Critical values for the bounds test If d d Lc , reject H 0 : 0 and accept H1 : 0 ; if d dUc , do not reject H 0 : 0 ; if d Lc d dUc , the test is inconclusive. Sugar Cane Example d Lc 1.393 dUc 1.514 d 1.291 d Lc , A lagrange multiplier test yt 1 2 xt et 1 vt eˆt yt b1 b2 xt t = 2.006 F = 4.022 p-value = 0.054 Points to note in testing for autocorrelation • In the LM test, the estimated residual for t=1 is missing. Either omit the first observation or make e0=0. • D-W test is exact in finite samples, LM is a large sample test. • D-W is not valid when one of the variables is a lagged dependent variable. • The LM test can be used for higher order forms of autocorrelation. Prediction with AR(1) errors y0 1 x02 e0 yˆ 0 b1 b2 x0 yT 1 1 2 xT 1 eT 1 1 2 xT 1 eT vT 1 eT yT ˆ 1 ˆ 2 xT yˆT 1 ˆ 1 ˆ 2 xT 1 ˆ eT yˆT h ˆ 1 ˆ 2 xT h ˆ heT