Transcript Document
Autocorrelation 1) The Problem: What is it? ei = f(ei-j) i = 1,2, ... j=1,2, … 2) WHAT does it look like ? Positive autocorrelation Negative autocorrelation Autocorrelation 2) WHAT does it look like ? Autocorrelation 3) WHERE does it come from ? a) Economic Shocks / lags - omitted variables b) Specification errors c) Transformations of data - aggregation (smoothing) - monthly to quarterly data - interpolation Autocorrelation GENERAL PROBLEM ei f (ei j ) for i =1,2...n AR(1) MARKOV PROCESS (First Order) ei ei1 + i where i ~ NID(0,2 ) and | | 1 2 Then:V (ei ) 2 1 = V ( i ) 1 ESTIMATION using OLS (AR(1) Process) Good News OLS ESTIMATOR is unbiased Bad News V (b2 ) VARIANCE (OLS) AR1 E (b2 ) 2 is biased 2 2 2 2 2 i ( X i X ) i ( X i X ) where ( , X ) ei ei 1 + i i ~ NID(0, 2 ) ESTIMATION using OLS (AR(1) Process) The Problem: OLS V (b2 ) 2 (X i V (b2 )OLS is BIASED i X )2 t stats V (b2 ) AR1 is INEFFICIENT Not BEST V (b2 ) AR1 Diagnostics: DURBIN-WATSON STATISTIC DW 2 ˆ ˆ ( e e ) i i1 i 2 2 ˆ ( e ) i i 1 eˆi eˆi 1 2 1 i 2 2 ˆ e i i 1 2(1- ) ei ei 1 + i Durbin-Watson in STATA gen t = _n tsset t regress y x1 x2 …. dwstat - autocorrelationcoefficient DURBIN-WATSON Test Ranges B D C A 0 dL dU A E C B/D 2 E 4 - dU Positive First Order Autocorrelation Negative Autocorrelation NO Autocorrelation => Inconclusive 4 - dL 4 Autocorrelation: Therapy (GLS) Transform the model: Given 1st order AC ei ei1 + i AR(1) and i ~ NID(0, 2 ) is known Initial Model and Transformed Model Yi 1 + 2 Xi + e i (Yi Yi 1 ) 1 (1- ) + 2 (X i - Xi 1 ) + (ei - ei 1 ) Yi* 1* + 2 X i* + e i Results: > Estimates are BLUE (in large samples) > one observation is lost > Interpretation of R2 Autocorrelation: Therapy COCHRANE-ORCUTT ITERATIVE PROCEEDURE (JASA-1949) AR(1) Process: ei ei 1 + i where i ~ NID(0, 2 ) In STATA, the procedure is done using the “Prais procedure” as follows: prais y x1 x2 x3 Income(Y) Consumption (X) Data (100 observations with autocorrelated errors) . tsset t time variable: t, 1 to 100 . regress y x Source | SS df MS Number of obs = 100 ---------+-----------------------------F( 1, 98) =29981.64 Model | 53320.0034 1 53320.0034 Prob > F = 0.0000 Residual | 174.285351 98 1.77842195 R-squared = 0.9967 ---------+-----------------------------Adj R-squared = 0.9967 Total | 53494.2887 99 540.346351 Root MSE = 1.3336 -----------------------------------------------------------------------------y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------x | .79994 .0046199 173.152 0.000 .790772 .809108 _cons | .9927132 .2687279 3.694 0.000 .4594314 1.525995 -----------------------------------------------------------------------------. dwstat Durbin-Watson d-statistic( 2, 100) = .6586762 . prais y x , corc Iteration 0: rho = 0.0000 Iteration 5: rho = 0.6030 Cochrane-Orcutt AR(1) regression -- iterated estimates Source | SS df MS Number of obs = 99 ---------+-----------------------------F( 1, 97) = 9381.54 Model | 8354.45777 1 8354.45777 Prob > F = 0.0000 Residual | 86.380492 97 .890520536 R-squared = 0.9898 ---------+-----------------------------Adj R-squared = 0.9897 Total | 8440.83827 98 86.1310027 Root MSE = .94367 -----------------------------------------------------------------------------y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------x | .8096481 .0083591 96.858 0.000 .7930576 .8262386 _cons | .3866333 .4997927 0.774 0.441 -.6053169 1.378584 -----------------------------------------------------------------------------rho | .6029705 -----------------------------------------------------------------------------Durbin-Watson statistic (transformed) 2.119424 Residuals Before Therapy 4 3 2 1 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 -1 -2 -3 Residuals After Therapy 1.5 1 0.5 0 1 -0.5 -1 -1.5 -2 -2.5 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29