Transcript Edexcel Further Pure 2
Edexcel Further Pure 2
Chapter 3 – Further Complex Numbers:
• Write down a complex number, z, in modulus-argument form as either z=r(cos ϴ + isin ϴ ) or z = re i ϴ . apply de Moivre’s theorem • to find trigonometric identities • To find the nth roots of a complex number.
Chapter 3 – Further Complex Numbers: FP1 Recap
In FP1, we have calculated the modulus and argument, now we are going to use this in the form z=r(cos ϴ + i sin ϴ ).
Chapter 3 – Further Complex Numbers
Consider the function e iθ Remember
Maclaurin/Taylor’s
Comparing with the other series expansions – we see that we have cos and sin This is called Euler’s relation
Chapter 3 – Further Complex Numbers
Complex numbers written in the modulus argument form R(cos + i sin ) can now be rewritten using Euler’s relation as
Re
i m 5i Z Therefore
z = 5e
iπ/3 represents the complex number with modulus 5 and argument = π / 3 4i 3i 2i -5 -4 -3 -2 -1 0 1 2 3 4 5 -i i e -2i -3i -4i -5i
Chapter 3 – Further Complex Numbers
Chapter 3 – Further Complex Numbers: Proof
when n = 0 (cos θ + i sin θ) 0 = cos 0 + i sin 0 when n < 0 = = (cos θ + i sin θ) 1 (cos θ + i sin θ) m 1 cos mθ + i sin mθ n = (cos θ + i sin θ) -m where n = – m, m > 0 using De Moivre’s theorem = cos mθ – i sin mθ (cos mθ + i sin mθ)(cos mθ – i sin mθ) Rationalising the denominator = cos mθ – i sin mθ = cos (– mθ) + i sin (– mθ) = cos (nθ) + i sin (nθ) (cos θ + i sin θ) n = cos nθ + i sin nθ true for
Exercise 3C, Page 31
Use de Moivre’s theorem to simplify question 1.
Chapter 3 – Further Complex Numbers: Binomial
You need to be able to apply the following binomial expansion found in C2:
Chapter 3 – Further Complex Numbers: Binomial
Use De Moivre’s theorem to show that cos 4 θ = cos 4 θ – 6cos 2 θ sin² θ + sin 4 θ and sin 4 θ = 4cos 3 θ sin θ – 4cos θ sin 3 θ cos 4 θ + i sin 4 θ = (cos θ + i sin θ ) 4 = cos 4 θ + 4 cos 4 cos θ 3 θ (i sin θ ) + 6 cos 2 θ (i sin θ ) 3 + (i sin θ ) 4 (i sin θ )² + = cos 4 θ + i 4 cos 3 θ i 4 cos θ sin 3 sin θ θ – 6 cos + sin 4 θ 2 θ sin² θ – = cos 4 θ – 6 cos 2 θ i (4 cos 3 θ sin² θ sin θ + sin 4 θ + – 4 cos θ sin 3 θ ) Comparing real parts cos 4 θ = cos 4 θ – 6 cos 2 θ Comparing imaginary parts sin 4 θ = 4 cos 3 θ sin θ sin² – 4 cos θ θ + sin 4 θ sin 3 θ
Now
Chapter 3 – Further Complex Numbers
z = cos θ + i sin θ = e iθ and so z -1 = cos θ – i sin θ = e -iθ By alternately adding and subtracting these equation we obtain z + 1/z = 2 cos θ z - 1/z = 2i sin θ and also (z + 1/z) n = 2 cos nθ and also (z - 1/z) n = 2i sin nθ cos θ = 1 / 2 (e iθ + e -iθ ) sin θ = 1 / 2i (e iθ – e -iθ )
Chapter 3 – Further Complex Numbers
Exercise 3D, Page 36
Answer the following questions:
Questions 1, 2, 3, 4 and 5.
Extension Task:
Question 7.
Chapter 3 – Further Complex Numbers: Nth roots
Solve the equation z
3
= 1
Chapter 3 – Further Complex Numbers: Nth roots
Chapter 3 – Further Complex Numbers: Nth roots
Exam Questions
1.
(a) Express 32 cos 6
θ
r and s are integers.
in the form p cos 6
θ
+ q cos 4
θ
+ r cos 2
θ
+ s, where p, q,
(5)
(b) Show that sin 5q = (sin 5q – 5 sin 3q + 10 sin q ). (5)
(Total 10 marks)
Exam Answers
1.
(a) 1
z
6
z
6 6
z
4 15
z
2 20 15
z
2 6
z
4
z
6 = z 6 + z –6 + 6(z 4 + z –4 ) + 15(z 2 + z –2 ) + 20 64cos 6
ϴ
= 2 cos 6
ϴ
+ 12 cos 4
ϴ
+ 30 cos 2
ϴ
+ 20 32 cos 6
ϴ
= cos 6
ϴ
+ 6 cos 4
ϴ
(p = 1, q = 6, r = 15, s = 10) + 15 cos 2
ϴ
+ 10 A1 any two correct
M1 M1 M1 A1, A1 (5)
(b)
Exam Answers
1
z
5 = z 5 – 5z 3 + 10z – 10
z
5
z
3 1
z
5
M1, A1
=
z
5 1
z
5 5
z
3 1
z
3 10 1
z
(2i sin
ϴ
) 5 = 32i sin 5
ϴ
= 2i sin 5
ϴ
– 10i sin 3
ϴ
+ 20i sin
ϴ
sin 5
ϴ
= (sin 5
ϴ
– 5sin 3
ϴ
+ 10 sin
ϴ
)
M1, A1 A1 (Total 10 marks)