Transcript Slide 1

Palladium Related Defects in Silicon
Rakesh Dogra
Punjab Technical University, INDIA
A.P. Byrne, D.A. Brett, M.C. Ridgway
Australian National University, AUSTRALIA
Motivation
• Fast Diffusion of Pd in Si
• Introduces Deep Levels in band gap
• Deep levels act as trap/recombination centres
• DLTS: Pd has amphoteric behavior
Acceptor in n-type Si
Donor in p-type Si
Large probability to form Pd-Dopant (P, As, Sb, B) pairs
Pd can be gettered
Motivation
Local Structure of isolated Pd and Pd related defects
(Pd-dopant, Pd-V, Pd-I pairs) can be studied with
Nuclear Hyperfine Methods
Perturbed Angular Correlation Spectroscopy
Experimental Details
Sample Preparation
• Cz-Si (100) were implanted with Phosphorus and Boron
•
Doses: 5e15 to 1e20 ions cm-3
•
Samples annealed at 900oC for 10s using RTA
Experimental Details
PAC Probe
•
•
•
•
100Rh; E = 70 MeV
Recoil energy = 8 MeV
Implantation Depth = 3 mm deep into Si wafers
Isochronal annealing in N2 atmosphere
100Pd
92Zr(12C,4ng)100Pd
EC
1+
84 keV
Zr foil
2+
2.5mm
75 keV
12C
Beam
Si wafer
1100Rh
T1/2=3.6d
I = 2 +,
t1/2 = 214ns,
Q = 0.115b,
A22 = 0.1
Experimental Details
PAC Measurements
•
•
Slow-Fast coincident using four conical BaF2 scintillator detectors
Perturbation spectra formed from coincidence counts
 C (180, t )  C (90, t ) 
R(t )  2 

 C (180, t )  2C (90, t ) 
•
Least squares fitted with:
i
R(t )  A22 G22 (t )  A22  f i G22
(t )  C
i
Site 1: Damaged
Site 2: Unperturbed
Site 2: Defect specific
From coupling constant nQ, the largest component of electric field
gradient, Vzz is extracted
nQ 
eQVzz
h
Results
0.10
5e17 P cm
-3
5e17 P cm-3
0.05
Well defined interaction frequency
4
0.00
1e18 P cm
0
-3
1e18 P cm-3
0.05
4
Fractional Population (%)
0.10
0.10
2e18 P cm
-3
2e18 P cm-3
0.05
0.00
0.10
5e18 P cm
-3
5e18 P cm-3
0.05
0
4
0
25
0
1E17
4
1E19
1E21
2
Phosphorus concentration (ions/cm )
0.00
0.10
1e19 P cm
1e19 P
0.05
0
-3
cm-3
4
0.00
0
0.10
-3
1e20 P cm
1e20
P cm-3
0.05
4
0.00
0
200
400
600
Time (ns)
800
0
0.00
0.05
(Grad/s)
0.10
Relative Probe Fraction (%)
R(t)
Intensity (FFT)
0.00
50
75
50
25
0
0
100
200
300
400
Annealing Temperature (C)
500
Results
6.7x10 P cm
-3
<100>
0.08
15
1.9x10 B cm
-3
<100>
P-Si
0.00
0.00
19
0.08
5.8x10 P cm
-3
<100>
0.08
19
8.4x10 B cm
-3
<100>
19
0.08
5.8x10 P cm
-3
<110>
0.00
19
4.3x10 As cm
0.08
-3
R(t)
R(t)
0.00
0.00
0.08
19
8.4x10 B cm
-3
Fractional Population (%)
14
0.08
<111>
60
40
20
0
540
600
660
720
Annealing Temperature (C)
Thermally unstable
<100>
0.00
0.00
0.08
19
0.08
0.7x10 Sb cm
-3
19
5.8x10 P cm
-3
<100>
<100>
0.00
0.00
0
200
400
600
800
Time (ns)
0
200
400
600
800
Time (ns)
n-Si EFG Parameters p-Si
► nQ = 13.1(2) MHz
► h= 0  Symmetric EFG
► EFG orientation <111>
► nQ = 35.5(3) MHz
► h= 0  Symmetric EFG
► EFG orientation <111>
Discussions
Similar EFG parameters in highly doped n-Si
-Same defect formation
-Ruled out the formation of Pd-dopant pairs
-Defect pair dissociate above TA = 500oC
-Maximum probe fraction b/w TA = 200-300oC
-n+-Si comprises of excess vacancies (negative)
-Formation of PdSi-VSi pair, PRB 72 (2005) 193202
-Phosphorus Diffusion Gettering of Pd !
EC
Pd
Vacancy
Ei
Si
V-
EF for n-Si
Ev=Ec-0.12(2)
EV
Unique interaction frequency for
P dose ≥ 5e17 ions cm-3
Discussions
Strong EFG in highly doped p-Si
• Defect pair is observed between TA = 550-750oC
•
•
•
Around this temperature Pd diffuses interstitially
Axially symmetric EFG
Tentatively Pdi-BSi pair  supported by theoretical calculations
IT2
B
IT1
IO
Discussions
Temperature dependence of EFGs
Both pairs show T3/2 dependence
3 

n Q (T )  n Q (0) 1  T 2 


15.2
40
Pd-B
nQ (MHz)
14.4
Pd-B

(0)=36.8(2) MHz
-3/2
=2e-5 K
Pd-V
13.6
35
30
12.8
25
Pd-V
nQ
12.0
(0)=13.5(2) MHz
Pd-V
-3/2
 =6.1E-6 K
0
150
300
450
Temperature (K)
600
20
750
nQ (MHz)
nQ
Pd-B
•Different charge
states of the defect
complexes
•Effect is stronger
for Pd-B pair
Acknowledgements
•
Organizers for waiving off the registration fee
•
Dept of Science & Technology, India for financial support