Bolometers evolution - Fysik och Teknisk Fysik Chalmers/GU

Download Report

Transcript Bolometers evolution - Fysik och Teknisk Fysik Chalmers/GU

New Generation Submillimeter telescopes for an Era after Planck and Herschel missions

V.D. Gromov, N.S. Kardashev

Astro Space Center, P.N. Lebedev Physical Institute , Moscow , Russia

Outline

ASC projects Golden Era of Submillimeter Astronomy (THz/FIR, Astrophisics/Cosmology Exp./Theory) Current projects: Spitzer, Astro-F, Planck, Hershel, ALMA, APEX New generation projects: Cryogenic Submillimeter telescopes Sensitivity gap between radioastromy and IR - X ray Extraterestrial background gap, most distant objects detection New generation detectors: antenna-copled bolometers Conclusions. Need in observationa tests of detectors

Lebedev Physical Institute Astro-Space Center

Space Projects

Submillimetron and Millimetron

Submillimetron project participants

Millimetron Project

Telescope diameter -12 m Spectral region 0.2 - 3 mm Mirror cooling T = 4 K Presented at 36-th Liege Int. Astrophys. Colloqium "From Optical to Millimetric Interferometry: Scientific and Technological Challenges", July 2001. Proc., pp. 99-102 V. Gromov, N. Kardashev, "Space Submillimeter interferometer” .

Submillimeter telescope module docked to Russian Segment of the ISS for service and instruments replacement

RSCE

S.P. Korolev Rocket Space Corp. Energia Leonid Gorshkov Sergey Stoiko Andrey Adov Submillimeter telescope module Russian segment of the ISS

Submillimer Sky Survey Project

Telescope diameter: D=0.6 m .

Submillimeter Telescope bay (shields not shown) •

Wavelengths: submillimeter bands: 0.2- 2 mm .

Antenna of docking system Aggregates compartment •

Cooling: telescope - 5K, detectors - 0.1-0.25 K .

Detectors: bolometer arrays 10 -18 W/Hz 1/2

Docking assembly Pressurized compartment Solar panels Nonpressurized compartment •

Sensitivity of the telescope 3-12 mJy (integration time = 1 s).

Angular resolution

= 1’ - 10'

Spitzer

( SIRTF , Space InfraRed Telescope Facility )  3-180  SIRTF is lifted into space aboard a Boeing Delta II Heavy rocket in the early morning of August 25, 2003, Cape Canaveral Air Force Station.

Herschel (FIRST) and Planck mission 2007

Scientific objectives

• Full-sky survey in submillimeter and millimeter wave region with polarization and variability data • Catalog of all-sky submm point sources at tens mJy level (high sensitivity limited by confusion and extraterrestrial background in its spectral minimum ) • Photometric spectra (SED), and their variability, high redshift evaluations • Syunyaev-Zeldovich effect (SZ cosmology) • Foreground sources for CMBA analysis • Quiet sources obscured by dust, not generating high energy particles manifesting in radio and X-ray • Cold object of Solar system, Kuiper belt, Oort cloud

WMAP satellite

WMAP has detected evidence that first stars ignited 200 million years after the Big Bang.

Results: Universe is 13.7  1% billion years Old Big Bang The geometry of the

Universe is flat.

The matter of which we are made is only

4%

of the Universe

Dark ages

10 5 l.y.

CMB 10 9 l.years

10 10 light years

Super young galaxies: redshift measurements in photometric (bolometric) submm survey Starburst galaxy model of Efstathiou, Rowan-Robinson & Siebenmorgen (2000, MNRAS). Spectral band of Submm sky survey photometer of Gromov et al. (2003, 3 d ESA MMW workshop)

Next Generation Submillimeter-wave (Terahertz) cryogenically cooled space telescope concepts

1

Small mirror Full sky survey

2

Large deployable reflector Selected sources imaging ASC/RSCE: Submillimetron NASA: CIRCE Survey of InfraRed Cosmic Evolution ASC: Millimetron NASA: SAFIR Single Aperture Far InfraRed observatory

10 -5  I  , W/m 2 sr

Extraterrestrial background

10 -6 10 -7 10 -8 10 -9 10 -2 Brightness 

I

,

(from bottom to top). 10 -1 for

b>60 o , 30

 , mm

o

10 0

o , 10

10 1

o

and

b= 0, l=180 o

10 -2  I  , W/m 2 sr 10 -3 10 -4 10 -5 10 -6 10 -7 10 -8 10 -9 10 -2 10 -1

Cooled mirror background

10 0 10 1  , mm Telescope mirrors T = 80, 40, 20, 10, 5, 4, 3, and 2 K - thin curves from top to bottom (  =0.01); dashed curve  =0.04, T= 5 K. Thick solid curve shows extraterrestrial background for comparison.

But why 4K?

Because it makes a big difference!

A 4K scope is background-limited (zodi @ <200µm, CMB @ >200µm) At these wavelengths, point source sensitivity is more dependent on temperature than on aperture!

Photon noise

(Bose-Einstein statistics)

Power detector

, signal ~ <|E 2 |>:

(direct detector, bolometer, photon counter).

Noise Equivalent Power: NEP 2 ~<  n 2 >= <

n

> ( 1 + )

Linear detector

, signal ~ E(t):

(RF amplifier, mixer receiver).

Noise temperature T noise ~ ~ ( +

1/2

) - mean number of photons in quantum state .

At low background <

n

>

<< 1 .

Moor law for astronomy

Astronomical bolometers evolution

from simple cell to full function separation

CEB-STJ bolometer (An)(Ab+Hc)(Hc+Ts) Antenna-coupled bolometers TES, KID (An)(Ab+Ts+Hc)

Composite bolometer (An+Ab)(Ts) (Hc) Bolometer F. Low (An+Ab+Ts) (Hc) Hot electron InSb bolometer “all in one” (An+Ab+Ts+Hc) An-antenna, Ab-absorber, Ts-t o sensor, Hc - heat conductor

Antenna-coupled bolometers

no limitation on sensor size

The calculated sensitivity is almost two orders of magnitude higher than that of the best available direct detectors of millimeter and submillimeter radiation operated at the same temperature.

TES - Transition Edge Sensor: 1990-Nahum M.; Richards P .

SIN: Superconductor-Insulator-Normal metal sensor 1993 - Nahum M.; Richards P.L.; Mears C.A.

SIN demonstration NEP = 3x10 April - November - M.Nahum, J.Martinis (NIST) Andreev reflection -18 W Hz -1/2 "Andreev detector“ - ASC + KIPP 1995 CEB - Cold Electron Bolometer (NHEB, CCNHEB) L.Kuzmin, Chalmers 1998

NEP comparision CMB COBE/FIRAS SCUBA bolometer array. CMB anisotropy. (BOOMERANG,MAXIMA)

NEP bol =10 -14

W/Hz 1/2 .

NEP bol =10 -16

W/Hz 1/2 .

NEP bol =2·10 -17

W/Hz 1/2 Spider-Web Bolometer Andreev Bolometer.

NEP bol =10 -17

W/Hz 1/2 .

NEP bol =10 -18

W/Hz 1/2 .

Nanometric bolometer at temperature of milli-Kelvins

as subject for "Andreev physics”, a mesoscopic region, where dominate Andreev reflection, Andreev conductance, Andreev interferometry, Andreev current, Andreev levels, Andreev scattering, Andreev tunneling, Andreev channels, Andreev orbit, Andreev states and even Andreev billiard .

Antarctic station Vostok

Computed atmospheric transmission, zenith, mean winter t=-70 o C, w = 0 .2 mm, H=3488 m a.s.l..

Burova et. al, P. Astron. J., 15, 339 (1986)

Peak Terskol, 3100 m a.l.s.

BTA 6 meter telescope, Russia

ALMA, 5000 m a.s.l.

COBE

(COsmic Background Explorer) Sky mapping in radio and 10 IR bands 1.25 -240  m with resolution 42  . Nov. 1989.

COBE satellite had a total mass of 2270 kg, a length of 5.49 m, and a diameter of 2.44 m with Sun-Earth shield and solar panels folded (8.53 m with the solar panels deployed).

IRAS – discovery of IR sky

Survey  = 12, 25, 60, 100  m

ISO (Infrared Space Observatory)

• Nov.

1995,  0.6 m, T=3 K.

• IR bands 2.5 -240 selected sources  m, 5" resolution, pointing to • For comparision, main Submillimetron bands: 0.3-1 mm.

IRIS (Astro-F)

Infrared Imaging Surveyor 2005  0.7 m resolution 30-50" at  50-200  m.

Second IR sky survey

Lagrange Points of the Earth-Sun system

(not drawn to scale!).

1AU =150 million km. Lagrange points L1 and L2 are located approximately 1.5 million kilometers from the Earth

Detector Assembly Bolometers filled arrays characteristics:

  

response time = 10 ms temperature = 300 mK NEP = 5.10

-17 W/Hz 1/2

 (

m

) 100 - 700 pixel FWHM 25 arcsec

# of pixels Pixel size

16x32 1.5 mm Size of array 24x48 mm 2 2000 72 arcsec 6x12 4.3 mm 26x52 mm 2

25 arcmn

Focal plane FOV of array 6.7x13.3‘ 2 7.2x14.4‘ 2

CIRCE

initiative of Infrared Astrophysics group of GSFC/NASA • 2011 , survey  confusion limited full sky  2m, T=5 K, 0.1-0.5 mm with 13" resolution.

• Warm launch, radiative cooling + liquid Helium, 0.1 K ADR cooling of bolometer arrays.

• TES bolometers

SAFIR

The Single Aperture Far Infrared Observatory [email protected]

Parameter

Aperture Temperature Wavelength Diffraction limit Lifetime

Requirement

~10m 4K <20 500+µm  ≥40µm (1”) >5 years

Science Targets

distant galaxies circumstellar disks Galaxy @ z=5 coolant line emission (JWST, ALMA overlap) circumstellar disks distant galaxies Productivity, time variability!

Point sources sensitivity

10 3 Noise Equivivalent Flux Density, mJy/Hz 1/2 (>10 6 objects in survey with 60-cm cold mirror) 10 2 IRAS SIRTF/MIPS Hershel/SPIRE Plank/HFI Quantum limit for heterodyne detector with  =10 GHz 10 1 ISO-PHT IRIS SUBMILLIMETRON 10 0 10 -1 10 -2 10 -1  , mm 10 0 10 1

Spectra of a sturburst galaxy at different redshifts

Interstellar Dust Fractal Model

(Ned Wright, UCLA)

Bolometer technology

Terahertz measurements – Astro-applicatons

ASC-FIAN (Lebedev Physical Institute, Moscow) RSCE (Korolev Space Corp.) Chalmers University of Technology

SPB 0209 WMAP

Links