FCS - System and Instrumentation Physics
Download
Report
Transcript FCS - System and Instrumentation Physics
Detection, identification and
conformational dynamic
characterization of single molecules
by ultra-sensitive fluorescence
spectroscopy techniques.
Jerker Widengren
Exp. Biomol. Physics
Dept. Physics, KTH
Topics of Discussion
Fluorescence Correlation Spectroscopy (FCS)
- Concept
- strategies to study molecular kinetics /
applications
Single-molecule Multi-parameter fluorescence
detection (smMFD)
- Concept
- single-molecule FRET studies
Fluorescence Correlation
Spectroscopy
Dynamic properties of molecules probed via
their thermodynamic fluctuations
At equilibrium, no perturbation
Original concept
Magde, Elson and Webb, 1972, Phys. Rev. Lett. 29, 705
Elson and Magde, 1974, Biopolymers, 13, 1
Magde, Elson and Webb, 1974, Biopolymers, 13, 29
Ehrenberg and Rigler, 1974, Chem. Phys., 4, 390
FCS set-up
Higher spatial discrimination
Higher spectral discrimination
Enhanced detection efficiency
- increased fluor./(mol. x s)
- reduced background
REF:
- Rigler and Widengren, in Bioscience,
Klinge and Owman (Ed.), Lund University
Press, 180, 1990
- Rigler, Widengren and Mets, in Fluoresc.
Spectroscopy, Wolfbeis (Ed.),
Berlin:Springer, 13, 1992
- Rigler, Mets, Widengren and Kask,
Eur. Biophys. J. 22, 179, 1993
Fluorescence fluctuations due to translational diffusion
I(t)
<I>
t
I(t)
<I>
t
The Autocorrelation function:
G( )
I ( t ) I ( t ) [ I I ( t )][ I I ( t )]
I ( t ) I ( t )
1
I 2
I 2
I 2
Translational diffusion for a 3D gaussian volume element:
1
1
1
1/ 2
G D ( ) (
)(
)
1
2
2
N 1 4D / 1 1 4D / 2
The experimental FCS curve for translational diffusion:
2.6
2.4
2.2
2.0
1/N
G()
1.8
1.6
D
1.4
1.2
1.0
0.8
0.0001
0.001
0.01
0.1
1
10
Correlation time (ms)
2
1
1
1
1/ 2
G D ( ) (
)(
) 1 D 1 , where D = kT
2
2
N 1 4D / 1 1 4D / 2
4D
6R
Change in diffusion properties
DF
DB
1 1 Y
Y
G (t )
1
N 1 /
1 /
DF
DB
Ligand-receptor interactions:
A: nAChR in solution
Association kinetics
1,0
2,2
0,8
2,0
Association of -bungatrotoxin to nAChR
INCUBATION TIME
0 min
4.5 min
19.5 min
72 hrs
1,8
G()
1,6
1,4
0,6
Free
0,4
Bound
0,2
Total
0,0
10
100
Incubation time (min)
1,0
Dissociation kinetics
0,8
1,2
0,6
0,4
1,0
total
0,2
0,1
1
correlation time (ms)
bound
10
0,0
1
10
Incubation time (min)
100
High
sensitivity, ligand-receptor
interactions at low conc. can be
followed
low conc. of labelled ligands --->
facilitates displacements studies
No separation of bound from unbound
Low quantities of material needed
No radioactivity
REF: Rauer, Neumann, Widengren, Rigler 1996, Biophys. Chem
58, 3-12
Change in fluorescence upon chemical reaction
I(t)
<I>
t
2.6
2.4
2.2
2.0
1/N
G()
1.8
1.6
D
1.4
1.2
1.0
0.8
0.0001
0.001
0.01
0.1
Correlation time (ms)
1
10
Change in fluorescence upon chemical reaction
I(t)
Fl X
k1
k 1
FlX
<I>
t
2.6
2.4
2.2
2.0
1/N
G()
1.8
1.6
D
1.4
1.2
1.0
0.8
0.0001
0.001
0.01
0.1
Correlation time (ms)
1
10
Change in fluorescence upon chemical reaction
I(t)
Fl X
k1
k 1
FlX
<I>
t
Ion concentration monitoring:
Fl H
2
k1
k 1
HFl
2.2
FITC in 1 mM carbonate buffers
2.0
Rh-II in 1 mM EGTA buffers
pH 7.5
2.0
>100 M
pH 7
pH 6.5
G()
1.8
0.64 M
pH 5.5
1.4
1.1 M
1.6
pH 6
1.6
2.4 M
1.8
0.41 M
G()
2.2
0.18 M
1.4
92 nM
pH 5
1.2
1.2
1.0
1.0
0.0001 0.001
0.01
0.1
(ms)
1
10
100
1000
0.1
1
(ms) 10
100
1.25
Buffer dependence (phosphate buffer)
Buffer effects
Autocorrelation
1.20
k
Fl 2 H
+
300 M
1.15
1.0 mM
3.0 mM
1.10
1.05
HFl
k -
100 M
1.00
0.01
0.1
Time (ms)
1
10
k
BH Fl
2
k1
k -1
0,6
0,5
6 -1
k diss
BH
ktot(10 s )
B H
ass
B HFl
0,4
phosphate
citrate
HEPES
NaCl (/200)
0,3
0,2
0,1
Widengren J, Terry B, Rigler R,
Chem Phys. 249, 259-271, 1999
0,0
0,0
0,5
1,0
1,5
2,0
Concentration (mM)
2,5
3,0
Photophysics
S1 ( )
G ( ) G D ( )
1
S1
-
triplet state transitions
- electron transfer
- trans-cis isomerization
Triplet state monitoring by FCS
k23
S1
k12=absIexc
T1
k21
k31
S0
S0 (t ) k12
d
S
(
t
)
k
dt 1 12
T (t ) 0
S +S
0
1
T
S +S
0
1
k 21
- k 23 k 21
k 23
k 31 S 0 (t )
0 S1(t )
k31 T(t )
T
Fluctuations in fluorescence due to singlet-triplet transitions
The fluorescence intensity correlation function:
2,2
Rh6G in Water
2,0
1,8
Power 48.4 W
Power 350 W
Power 2,55 mW
G()
1,6
T
G( )
lim
T
1
I( t )I( t )dt
T 0
1 T
I
(
t
)
dt
T 0
1
2
1,4
I 2 I( t )I( t )
I 2
1
12 2 2
1
1
N (1 T)
4D
4D
Teq
1,0
1E-4
1/ 2
1 T
eq
Teq exp( 3 ) 1
k 23I exc
I exc ( k 23 k 31 ) k 21k 31
I ( k k 31 ) k 21k 31
T
exc 23
3
I exc k 21
1
1,2
1
2,2
2,0
1,8
1,6
1,4
1,2
1,0
0,8
0,6
0,4
0,2
0,0
1E-3
0,01
(ms)
0,1
1
10
Rh6G in water
T(s)
Teq
0,01
0,1
1
Laser Power (mW)
10
Environmental influence
on the triplet state
2,2
2,0
1,8
properties of
1,2
1,0
1E-4
1E-3
0,01
(ms)
0,1
1
10
FITC
2.2
[KI]=0 mM
[KI]=0.2 mM
[KI]=2.0 mM
[KI]=5.0 mM
1,8
2.0
Rh6g in water at different oxygen conc.
1.8
1.6
1,6
1,8
1,4
1,2
1.2
1,2
1,0
1.0
1,0
1E-4
1E-3
(ms) 0,1
0,01
1
10
FITC in water (pH 9)
Power 19.8 W
Power 95.6 W
Power 568 W
1,6
1.4
1,4
2,2
2,0
oxygen atm.
air atm.
argon atm.
G( )
G()
1,4
Rh6G in water
2,0
Triplet state
1,6
G()
2,2
G()
Effects of solvents
and quenchers on
the triplet state
Solvent effects of Rh6G
Ethylene glycol
Ethanol
Water
0.001
0.01
0.1
(ms)
1
10
100
1E-4
1E-3
0,01
(ms)
0,1
1
10
Triplet state monitoring:
• Distortion of FCS curves at high excitation intensities can
to a large extent be attributed to triplet state build-up.
• By FCS it is possible to measure intersystem crossing
rates, triplet state lifetimes and excitation cross sections.
• The environmental sensitivity of the triplet parameters
suggests the use of FCS for micro-environmental probing.
• Knowledge of triplet parameters important for
optimization of fluorescence
REF: - Widengren, Rigler and Mets J. Fluoresc. 4(3), 255-258, 1994
- Widengren, Mets and Rigler J. Phys. Chem. 99, 13368-13379, 1995
- Mets, Widengren and Rigler Phys. Chem. 218, 191-198, 1997
If D 0, Fl = 0 :
Dual colour FCS
Photon counting histograms (PCH) /
Fluorescence intensity distribution analysis (FIDA):
Fluorescence brightness
Concentration
Figures of merit:
number of deteced fluorescence photons
molecule
number of deteced fluorescence photons
molecule time
Photophysical limitations:
- Fluorescence saturation
- Photodestruction
Fluorescence saturation:
Photobleaching
3,5
2,0
Rh6G in water
3,0
FITC in water, pH 9
2
1100 kW/cm
1,8
2
1 kW/cm2
470 kW/cm
140 kW/cm2
2,0
13 kW/cm2
1,6
1,4
1,5
1,2
1,0
1,0
0,001
0,01
0,1
1
Correlation time (ms)
10
100
4 kW/cm2
G()
G()
2,5
26 kW/cm2
0,1
1
10
100
Correlation time (ms)
Widengren J, Rigler R, Bioimaging, 4, 149-157, 1996
Eggeling C, Widengren J, Rigler R, Seidel, C, Anal Chem, 70, 2651-2659, 1998
Photobleaching effects in a cell surface
Exposure time: t
Diffusion coeff: D
Excitation power: Pexc
Radius of cell area: Rcell
-10
2
Pexc
Rcell
Normalized concentration
D=7x10 cm /s
1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0
2.5 W
5.0 W
10 W
25 W
50 W
100 W
250 W
0
Widengren J submitted to Biophys. J.
1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0
1
2
3
4
Radial distance (m)
5
How to maximize
fluorescence information
from single molecules:
nf
info
nf
Single-molecule Multi-parameter Fluorescence detection (smMFD)
Model system
A488 emission
Cy5 excitation
Cy5
500
550
600
650
Wavelength (nm)
A488
700
Fluorescence resonance energy transfer
DIexc
kFRET
kD10
kFRET´
kA10
A
D
6
R0
E 6
6
R 0 R DA
R0=8.7910-5 J() FD n-4 21/6 Å
E(FD, FA, rD, rA, FA, FD)
FRET and Coincidence Analysis
FG 1
E (1
)
FR
10
100
IG [kHz]
Ex 496 nm
5
1
10
0
1
log IR [kHz]
100
1
10
0
1
10
10
0
frequency
100
IG [kHz]
Ex 496 nm
Ex=647 nm
10
0
0.1
30
0
1
20
10
z:/singlem/dec99/12/HD3HD5_DA_g/smd/bi4/HD3HD5_DA_g_vortrag.opj
0
20
100
IG [kHz]
Ex 496 nm
Ex=647 nm
10
IR [kHz]
2
100
1
10
0
1
100
1
10
0
1
1
2
log IG [kHz]
0
20
frequency
-1
-1
0
1
2
log I G [kHz]
0.1
40
frequency
100
Ex 496 nm
Ex=647 nm
IR [kHz]
100
1
10
0
1
Alexa 488 - Cy5
z:/singlem/dec99/12/HD5HD6_DA_gr/smd/bi4/HD5HD6_DA_gr_vortrag.opj
0.1
40
20
2
Alexa 488 - Cy5
z:/singlem/dec99/12/HD1HD5_DA_gr/smd/bi4/HD1HD5_DA_gr_vortrag.opj
10
0
18 bp
2
Alexa 488 - Cy5
1
2
log I G [kHz]
0.1
1
30 I [kHz]
G
20
10
0
IR [kHz]
10 bp
log IR [kHz]
5 bp
0
frequency
0
0
10
Alexa 488 - Cy5
1
2
log I G [kHz]
1
IR [kHz]
1
-1
-1
0.1
40
frequency
1
0
Ex 496 nm
100
z:/singlem/dec99/12/HD6HD5_DA_g/smd/bi4/HD5HD6_DA_g_vortrag.opj
frequency
0.1
30
1
2
log IG [kHz]
100
2
Alexa 488 - Cy5
-1
-1
0.1
10
18 bp
2
z:/singlem/dec99/12/HD1HD5_DA_g/smd/bi4/HD1HD5_DA_g_vortrag.opj
0
0.1
1
40
30 IG [kHz]
20
10
0
IR [kHz]
log IR [kHz]
log IR [kHz]
10
Alexa 488 - Cy5
frequency
Ex 496 nm
10 bp
100
-1
-1
log IR [kHz]
100
0
2
-1
-1
10
IG [kHz]
20
IR [kHz]
5 bp
20
1
log IR [kHz]
0
0.1
30
frequency
1
frequency
frequency
0.1
10
z:/singlem/dec99/12/HD3HD5_DA_gr/smd/bi4/HD3HD5_DA_gr_vortrag.opj
0
20
frequency
0.1
-1
-1
0
1
2
log I G [kHz]
0
20
0.1
40
frequency
FG 1
E (1
)
FR
DA
E 1
D
Conformation-based identification
DA
E 1
D
2
4
6
g [ns]
100
0
100
Fg/Fr
FG 1
E (1
)
FR
frequency
0
100
10
10
1
1
Mixture: bp:
5; 9; 13; 15 bp
0,1
0
2
4
g [ns]
6
Fg/Fr
0
0,1
150
frequency
Fit to a structural model of DNA
1,0
E via kISOtot
E via cps/mol
fit to model
E via DA
Efficiency E
0,8
0,6
0,4
:
0,2
0,0
2
4
6
8
10
12
bp
14
16
18
20
22
24
FRET studies with
smMFD:
em , F, r, F
-High sensitivity, precision and accuracy
-resolution better than 1 nm
- identification based on conformational properties
(”conformational fingerprints”)
- range: 10-100 Ångström
- Detection and selective analysis of subpopulations
Photodynamics of Cy5
86 kW/cm
2
2
0.4 kW/cm
3,0
6 -1
kISOtot(10 s )
1
3,5
647 nm exc
496 nm exc
2
0.8 kW/cm
2
1.6 kW/cm
0,1
G()
2,5
0,01
1
10
100
1000
2,0
2
2.9 kW/cm
3
2
Exc Int (kW/cm )
1
N P
1,5
*
1,0
1E-4
1E-3
0,01
0,1
1
Correlation time (ms)
10
100
-
O3S
SO3
N
Trans-cis
isomerization
of Cy5
N
O
N
O
Cy5-NHS
O
O
kNperp
1
1N
kPperp
1
1P
kISC
3
1N
kN10
Widengren J. & Schwille P.
J. Phys. Chem. 104(27), 64166428, 2000
Widengren J. & Seidel C.
Phys. Chem. Chem. Phys. 2,
3435-3441, 2000
-
3
1P
1Perp
kT
kP01
kN01
kP10
kPN
1
0N
kN01 = I exc
1
0P
kP01 = Iexc
P
FRET-mediated
excitation:
DIexc
kFRET
kD10
kFRET´
D
kA10
A
k ISOtot k ISO k BISO D E ( N ) ISO D E ( P) BISOI exc
FRET-mediated excitation of Cy5
Acceptor 1st bp, Donor 14th bp
G()
2,0
1,5
1.0 kW/cm
2
1.9 kW/cm
2
3.2 kW/cm
2
1,0
0,01
0,1
1
10
Correlation time (ms)
100
FRET-mediated excitation of Cy5
Acceptor 1st bp, Donor 14th bp
G()
2,0
1,5
1.0 kW/cm
2
1.9 kW/cm
2
3.2 kW/cm
2
1,0
0,01
0,1
1
10
100
Correlation time (ms)
2,5
Excitation intensity 3.2 kW/cm
2
G()
2,0
1,5
A-D distance:
4 bp
13 bp
18 bp
1,0
0,01
0,1
1
Correlation time (ms)
10
100
FRET-mediated excitation of Cy5
50
Acceptor 1st bp, Donor 14th bp
bp=4
bp=11
bp=13
bp=18
bp=22
45
2,0
G()
3 -1
kISOtot(10 s )
40
1,5
1.0 kW/cm
2
1.9 kW/cm
2
3.2 kW/cm
2
0,01
0,1
1
10
100
Correlation time (ms)
2,5
25
20
15
Excitation intensity 3.2 kW/cm
2
A-D distance:
4 bp
13 bp
18 bp
1,0
0,01
0,1
1
Correlation time (ms)
10
5
0
0,0
2,0
G()
30
10
1,0
1,5
35
100
0,5
1,0
1,5
2,0
2,5
3,0
3,5
2
Excitation Intensity (kW/cm )
4,0
FRET-mediated excitation of Cy5
50
Acceptor 1st bp, Donor 14th bp
bp=4
bp=11
bp=13
bp=18
bp=22
45
2,0
G()
3 -1
kISOtot(10 s )
40
1,5
1.0 kW/cm
2
1.9 kW/cm
2
3.2 kW/cm
2
0,01
0,1
1
10
100
Correlation time (ms)
2,5
25
20
15
5
0
0,0
Excitation intensity 3.2 kW/cm
2
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
2
Excitation Intensity (kW/cm )
k ISOtot ( FRET) E ( N ) E ( P)
k ISOtot (direct )
2
2,0
A-D distance:
4 bp
13 bp
18 bp
1,0
E via kISOtot
E via cps/mol
fit to model
E via DA
0,8
Efficiency E
G()
30
10
1,0
1,5
35
0,6
0,4
0,2
1,0
0,01
0,1
1
Correlation time (ms)
10
100
0,0
2
4
6
8
10
12
bp
14
16
18
20
22
24
Determination of E via trans-cis isomerization of
the acceptor dye
- Interference with other relaxation processes
* Photodynamic reaction to excitation monitored on acceptor side
+ Independent read-out:
* donor-fluorescence cross-talk
* background
* labelling efficiencies
* absolute concentrations
* absolute fluorescence and detection Q.Y.
+ Calibration on same sample possible
+ wide range, good precision
*P:
* lower than expected
* non-constant
Widengren, Schweinberger, Berger, and Seidel
J. Phys. Chem. A 105, 6851-6866, 2001
Selective FCS:
frequency
0
2
4
6
5
g [ns]
100
bp=18 bp
bp=15 bp
bp=13 bp
4
0
100
100
10
10
1
1
Mixture: bp:
5; 9; 13; 15 bp
0,1
0
2
4
g [ns]
6
G()
Fg/Fr
3
2
1
Fg/Fr
0
0,1
150
frequency
0
1E-4
1E-3
0,01
0,1
Correlation time (ms)
1
10
Traditional fluorescence
parameters
four dimensions:
- excitation and
fluorescence spectra: E, F
- quantum yield: F
- lifetime:
- anisotropy: r
Fluctuation
parameters
Acknowledgements:
Dept. Med. Biophysics, MBB, Karolinska
Insitutet, Stockholm:
Ylo Mets, Per Thyberg, Petra Schwille, Aladdin Pramanik,
Rudolf Rigler
MPI f. Biophys. Chem. Göttingen, Germany:
Enno Schweinberger, Christian Eggeling, Jörg Schaffer, Sylvia
Berger, Matthew Antonik, Claus Seidel, Martin Margittai,
Reinhard Jahn
Financial Support:
- Swedish Foundation for Cooperation in Higher Education and Research (STINT)
- BMBF-Biofuture Program
- VW-Stiftung
- The Swedish Research Council (Medicine)
- Magnus Bergwall Foundation
- The Swedish Society of Medicine
- Karolinska Intitutet Research Funds
Prospects for the future:
-Basic research: Reveal structures and dynamics of molecules
beyond ensemble averaging
-Ultrasensitve diagnostics: Detection and identification of sparse
amounts of disease-specific molecules on/inside cells or in
body fluids.
-Ultrasensitive characterization of disease specific molecules or
target molecules for drug therapies
-High-throughput-screening (small sample volumes, low
concentrations, fast read-out)
The Experimental Biomolecular Physics group
Senior researchers / post docs:
Anders Hedqvist
Per Thyberg
vacant
PhD students:
Per-Åke Löfdahl
vacant
vacant