Transcript Document
Journée thématique DAPNIA «Almants supraconducteurs» High Temperature Superconductivity (HTS) Opportunities & Challenges; R&D Activities in the US Yukikazu IWASA Francis Bitter Magnet Laboratory Massachusetts Institute of Technology Cambridge, MA 02139-4208 Orme des Merisiers, Bât. 774, Amphi Bloch, Saclay lundi 3 juillet 2006 Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 1 Outline • Review of LTS & HTS Characteristics • HTS Current Status (Bi-2223; Bi-2212; YBCO; MgB2) • Key issues • Opportunities HTS R&D Activities in the US • Challenges • Important Activities for HTS • Market Penetration for HTS • Conclusions Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 2 oHc2 vs.Tc Plots for LTS & HTS YBCO OXIDE 150 (n=2) Bi2Sr2Can-1CunO2n+4: OXIDES (BSCCO) (n=3) oHc2 [T] Bi-2212 100 50 Bi-2223 MgB2 COMPOUND Nb3Sn COMPOUND Nb-Ti ALLOY 0 0 Y. IWASA (FBML) [email protected] 20 40 60 Tc [K] 80 DAPNIA Day HTS Saclay (03/07/2006) 100 110 3 105 Jc Data: LTS @4.2 K HTS @4.2 K & Above 104 Jc [A/mm2] Useful range for magnet YBCO (4.2; 75) Bi-2212 (4.2) 103 Bi-2223 (4.2; 20) 102 MgB2 (4.2;20) 10 00 55 [Based on graph by P. Lee (12/2002; UW)] Y. IWASA (FBML) [email protected] Nb-Ti (1.8; 4.2) 10 10 B [T] 15 15 DAPNIA Day HTS Saclay (03/07/2006) Nb3Al ( 4.2) Nb3Sn (1.8; 4.2) 20 20 25 25 30 30 4 Bcenter vs Top Zones for LTS & HTS Magnets 50 YBCO Bi-2223/2212 Bcenter [T] 40 MgB2 30 Nb3Sn 20 Nb-Ti 10 0 0 10 20 30 40 50 60 70 80 90 100 Top[K] HTS Opportunities: higher fields over wider Top range Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 5 HTS Current Status Bi-2223 Available NOW as “magnet grade conductor” Only as TAPE Sumitomo Electric Bi-2223 4.2 mm 0.22 [T. Kato (Sumitomo) (2006)] • Difficult to reduce AC losses suitable for DC coils • “Pancake” coils rather than “layered” coils many joints “large” radial gaps needed in multi-coil inserts Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 6 HTS Current Status (continuation) Bi-2212 Available in WIRE form NEXANS Bi-2212 Wire • Easier to minimize AC losses • “Layered” coils Suitable for multi-coil “inserts” Still under development 0.8 mm 18 sub-element each of 37 filaments [Jean-Michel Rey (2006)] Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 7 HTS Current Status (continuation) YBCO Usable at LN2 temperatures (>64 K) Considered by many that YBCO less expensive than Bi-2212/2223 low materials costs, e.g., no Ag Only as TAPE same negative points as Bi-2223 Even AFTER MORE THAN 10 years, still the longest available ~100 m Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 8 HTS Current Status (continuation) MgB2 Available as WIRE same positive points as Bi-2212 Considered by many to be price-competitive against Nb-Ti Jc (>10 K) still much less than Nb-Ti’s (@4.2 K) More brittle than Nb-Ti 0.87 mm 36-filament wire MgB2 Nb barrier Cu [Mike Tomsic (Hyper Tech) (2006)] Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 9 Key Magnet Issues vs. Top Difficulty or Cost Protection Conductor Mechanical Stability Cryogenics 0 Range of Operation for LTS Magnets Y. IWASA (FBML) [email protected] ~100 Top [K] Range of Operation for HTS Magnets DAPNIA Day HTS Saclay (03/07/2006) 10 Opportunities Stability • HTS magnets VERY stable immune from disturbances, e.g., mechanical, that still afflict LTS magnets • ALL HTS magnets should be “adiabatic’’ → higher J Saving in production cost • Unnecessary to epoxy-impregnate HTS windings? Saving in production cost Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 11 Opportunities (continuation) • ALL HTS magnets, except those combined with LTS magnets, should be dry, cryocooled! the presence of liquid cryogen in the system tends to make cryogenics too “visible” to the user • TWO reasons why LHe NOT needed: 1. HTS magnets CAN operate well above LHe temperatures 2. “Large” temperature margins for HTS magnets [dT/dt 0]LTS not mandatory for HTS magnets • ONE serious disadvantage for dry magnets: Nearly ZERO thermal mass for the cold body ENTER: solid-cryogen-cryocooled “dry” HTS magnets Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 12 Cp(T) Plots 2.0 2.0 Llv = 2.56 J/cm3 for LHe SNe Ag SN2 Cu Cu Pb Pb Ag SNe 3 3K] K] [J/cm CpCp [J/cm 1.5 1.5 Phase transition (35.6 K): 8.3 J/cm2 SNe SN2 Pb SN2 1.0 1.0 Ag 0.5 0.5 Cu 0.0 0 00 Y. IWASA (FBML) [email protected] 10 10 20 20 30 40 30 40 Temperature T [K] [K] DAPNIA Day HTS Saclay (03/07/2006) 50 50 60 60 13 Opportunities (coontinuation) • When MgB2 can replace Nb-Ti, and Bi-2212/2223 and/or YBCO can replace Nb3Sn, it should be possible to make magnets NMR/MRI; HEP; even FUSION entirely of cryocooled HTS operating >10 K, with ZERO possibility of quenches “Dry” magnet tends to make cryogenics “invisible” Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 14 Opportunities for LTS & HTS Magnets: Present & Future • DC or ~DC LTS: present HTS: future • DC or ~DC LTS: proven HTS: better? • AC or DC Hope hinges on HTS Applications Current Status Medical MRI Magnetic Separation LTS (marketplace); HTS (R&D) LTS (marketplace); HTS (R&D) Crystal (Si) grower LTS (marketplace); HTS (R&D) RESEARCH NMR/MRI LTS (marketplace); HTS (R&D) LTS (marketplace); HTS (R&D) DC field MAGNET HEP LTS (“Teva;” LHC); HTS (R&D) Electric Power Conversion & Storage LTS (TORE SUPRA; ITER); HTS (R&D) Fusion Generator LTS (R&D); HTS (R&D) SME LTS (R&D); HTS (R&D) Flywheel HTS bulk disk (R&D) Electric Power Distribution Transmission HTS (R&D) Transformer HTS (R&D) Fault current limiter HTS (R&D) Electric Power End Use HTS (R&D) Motor MAGLEV Y. IWASA (FBML) [email protected] LTS (R&D); HTS (R&D) DAPNIA Day HTS Saclay (03/07/2006) 15 HTS R&D Activities in the US • Nearly ALL US superconductivity R&D activities on HTS • Major federal government HTS R&D activities targeted to devices (electric utilities & military) and YBCO Sponsor DOE Principal Areas 1) HTS electric power devices; 2) YBCO Air Force YBCO (lightweight magnets; protection) Navy NSF [b] NIH [c] Budget ~$40M/Y ~$10M/Y Synchronous motors (Bi-2223) for ship propulsion $80M [a] Operates the NHMFL national facilities ~$25M/Y Pays for many LTS NMR & MRI magnets [d] [a] Total for two motors, 5MW (2003) & 36.5MW (2006) [b] National Science Foundation [c] National Institutes of Health [d] Supports, among others, four HTS NMR/MRI magnet projects currently at MIT Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 16 Opportunities (continuation) Selected 1-GHz NMR Magnet Projects Based entirely on LTS • • 1 GHz NRIM (Japan) 1 GHz Oxford Instruments Based on LTS/HTS • • • 1 GHz: MIT (Bi-2223) 1.2 GHz: Grenoble/Saclay (Bi-2212) 1.3 GHz: NHMFL (Bi-2212) Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 17 3-Phase MIT 1-GHz LTS/HTS NMR Magnet Project* Phase 2 (2003-2007): 700 MHz 600 MHz / 100 MHz/ 55 mm RT bore 100 HTS (Bi-2223 @4.2 K) 40 Double Pancake Coils 55-mm RT bore 600 LTS (Nb-Ti/Nb3Sn @4.2 K) 140-mm COLD bore Bi-2223-Tape Double Pancake Coil 126.5 78.2 401.6 [JASTEC] * A US HTS activity (supported by NIH) Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 18 3-Phase MIT 1-GHz LTS/HTS NMR Magnet Project (cont.) Nb-Ti Nb3Sn Phase 3 (2008-20011)*: 1 GHz 760 MHz / 240 MHz / 63 mm RT bore 760 LTS (Nb-Ti/Nb3Sn @4.2 K) 175-mm COLD bore Bi-2223 240 HTS (Bi-2223 @4.2 K) 63-mm RT bore 64 Double-Pancake Coils 87 175 * NIH yet to approve Phase 3 Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) [JASTEC (2005)] 19 Grenoble/Saclay 1.2-GHz LTS/HTS NMR Magnet Project Phase 1: 850 Cu/350 HTS 850 (20 T)/20 MW Cu Magnet (Grenoble) 3-Coil HTS (Bi-2212) Insert (Saclay) 136 [Jean-Michel Rey (2006)] Y. IWASA (FBML) [email protected] 160 DAPNIA Day HTS Saclay (03/07/2006) 20 28 Bo [T] 1.2 Grenoble/ Saclay? March Towards 1 GHz & 1.2 GHz 26 24 1000 22 20 : SUPERCONDUCTING—LTS/HTS [GHz] 18 : SUPERCONDUCTING—LTS [MHz] 900 1 950 930 MIT? 800 750 : NON-SUPERCONDUCTING [MHz] 16 14 600 12 MIT MIT 500 10 360 8 270 6 220 200 4 2 0 40 60 100 YEAR 30 50 54 58 62 Y. IWASA (FBML) [email protected] 66 70 74 78 82 86 90 94 98 DAPNIA Day HTS Saclay (03/07/2006) 02 06 08 10 12 14 21 [Based on Kobe Steel data (1998)] Challenges Conductor • Develop “long” (~10 km) conductors • Reduce AC losses in Bi-2223 & YBCO (tapes) • Reduce price/performance ($/kA m) For NMR/MRI magnets • Develop superconducting joints Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 22 Current-Carrying Capacity vs. Price/Length Plots 105 $1/kA m I [A] 104 $10/kA m ITER Nb3Sn (5.5 K; 13 T) $100/kA m Nb-Ti MgB2 (4.2K; 6T) $2-5/kA m (2008-2010) (20 K; 2 T.) $200/kA m 103 Nb3Sn Tape (10 K; 1 T) YBCO (2008-2010) (77.3 K; s.f.) (2006) Bi-2223 (77.3 K; s.f.) 100 10 0.1 1 10 100 Price [$/m] Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 1,000 10,000 23 Challenges (continuation) Cryogenics • Easier for HTS than for LTS, but its ratio of compressor power QRT to refrigeration power at Top, Qop , needs MUCH (QRT /Qop ) QRT /Qop vs. Top for Selected Qop 10000 1W 10 W 100 W 1 kW 100 kW QRT /Qop 1000 100 10 CARNOT 1 0 10 20 30 40 50 60 70 80 Top [K] Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 24 Comparison of HTS vs. Cu Devices For an HTS device to compete its Cu counterpart operating at room temperature (RT), its dissipation at Top, PHTS [W/m], multiplied by the refrigerator’s compressor-to-cooling power ratio, QRT /Qop, < Cu’s Joule dissipation, PCu [W/m] PHTS (QRT /Qop) < PCu PCu /PHTS > QRT /Qop 1W Qop Challenge: Cryogenics • QRT /Qop , i.e., refrigerator efficiency 1 kW 10 kW QRT /Qop Top [K] 4.2 10 20 30 50 77 100 W 8000 1650 600 350 120 55 1500 500 220 110 50 22 850 380 140 70 30 15 400 180 75 45 20 10 Challenge: AC Losses • PHTS to satisfy PCu /PHTS > QRT /Qop Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 25 Comparison of Two Systems: An Illustrative Example • HTS (YBCO) & Cu Transmission “Lines” Based on HTS Refrigeration Power Requirement, Qop PHTS vs. PCu = I2R HTS w Cu Dimensions & Characteristics of “Basic (Ic =100 A) HTS tape YBCO Substrate; stabilizer, etc. w = 4x103 m (4 mm) s = m (1 µm) = 100 s = 1x104 m (100 µm) s s Y. IWASA (FBML) [email protected] 1x106 Cu w Ic = 100 A (77.3 K, s.f.) Jc = Ic / (ws)= 2.5x1010 A/m2 DAPNIA Day HTS Saclay (03/07/2006) s 26 Two-System Comparison (continuation) Self-Field AC Loss Power/length, PHTS [W/m], of HTS Line composed of n 100-A “basic” tapes operated at IT = n (It /Ic) PHTS Power Density/length, Pcu [W/m], in Cu Tape Cu w Pcu Figure-Of-Merit (FOM): Y. IWASA (FBML) [email protected] Pcu PHTS DAPNIA Day HTS Saclay (03/07/2006) QRT Qop s 27 Pcu /PHTS & FOM vs. i for 10-kA (nominal) Lines @77 K 10000 33 W/km (PCu/PHTS=6460) 100 W @77 K (QRT / Qop =22) FOM=294 540 W/km (1600) 1 kW @77 K (QRT / Qop =15); 107 1000 Pcu / PHTS 2.8 kW/km (700) 9.1 kW/km (380) 10 kW @77 K (10); 38 10 kW @77 K (10); 70 HTS non-competitive to Cu 100 77-K operation possible, but, at least in this example, a 10-kA HTS line superior to the Cu line only when the HTS line operated at currents below 5 kA 10 1 0 Y. IWASA (FBML) [email protected] 0.2 0.4 i 0.6 DAPNIA Day HTS Saclay (03/07/2006) 0.8 1 28 Two-System Comparison (continuation) = Pcu PHTS QRT Qop Ways to improve FOM: • Improved YBCO (Jc @77 K ) • Thinner substrate ( ) Challenges: YBCO • Improved refrigerator (QRT / Qop) Challenge: Cryogenics LTS’s Failure in Power Applications: • QRT /Qop @ 4.2 K too large to satisfy PCu /PLTS > [QRT /Qop]4.2 K Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 29 Protection “Expensive” magnets must be protected from permanent damages • LTS magnets generally rely on NZP (normal zone propagation) to spread out the resistive zone to keep the “hot spot” temperature well below 300 K • In HTS magnets, NZP velocities (longitudinal & transverse), compared with those in LTS magnets, very slow, leading to a dangerously high “hot spot” temperature Jm m (T )km (T ) U (T ) Ccd (T ) (Tcs Top ) for HTS Ccd (T) very large UHTS << ULTS Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) NZP Quench Initiation Zone (“Hot spot”) 30 Challenges (continuation) Protection • Develop fail-safe protection techniques • Develop normal-zone detection techniques Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 31 Important Activities for HTS • BUILD and operate MAGNETS: LTS, LTS/HTS, HTS • Enhance test facilities for evaluation of HTS Ic measurement (up to: 500 A; 30 T; 100 K; 0.5%) • R&D Areas, besides conductor Protection Cryogenics QRT /Qop or efficiency even at 77 K Make cryogenics LESS visible to the user o solid-cryogen may help achieve this goal Superconducting joints (for NMR/MRI) Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 32 Market Penetration for HTS • HTS applications most likely to succeed and benefit society, i.e., market penetration, include: DC or nearly DC devices: those already conquered by LTS, e.g., NMR/MRI; HEP; even fusion If HTS replacing technology to LTS its marketplace penetration to be decided by ECONOMICS Conductor cost/performance ($/ka m); AC losses; Cryogenic efficiency If HTS enabling technology, e.g., high-field NMR and MRI, its success dictated by HTS PERFORMANCE Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 33 Conclusions • HTS for NMR/MRI: work already started • HTS for HEP & fusion: NOT TOO EARLY to begin planning • For the most prized application in terms of sheer volume electric power, LTS NOT ENABLING: hope hinges on HTS • HTS opportunities & challenges will keep ALL of us innovative, relevant, and productive for a long time ! Merci beaucoup Y. IWASA (FBML) [email protected] DAPNIA Day HTS Saclay (03/07/2006) 34