Transcript Slide 1
Spatial & Energy resolutions (exp.& MC) for the Axial HPD-PET concept with YAP and LYSO crystals from the thesis works of Ignazio Vilardi Anna Palasciano Francesca Ciocia The 3D PET cameras New 3D axial HPD-PET concept Standard radial concept PMTs p axis axis Many rings of crystal–photodetector blocks radially displaced Lc =1.5-3cm Arrays of long (Lc~10-15 cm) crystal bars read out at both sides by segmented HPDs Concept made possible by CERN development of rectangular segmented 5‘’ HPDs with integrated self-triggering electronics A HPD-PET CAMERA MODULE • Array of 208 scintill.s (LSO, LYSO, YAP, LaBr3, n=1.8-1.9) • 16x13 crystals (3.2[Rx]x3.2[Ry]x150[Lc] mm3) tx=51mm, ty=42mm tX,Y>3·la (LSO) e2g(⊥)~ 90% • with spacing: 4x4 mm2 Rx "Proximity focused“ HPDs • Ry Rx = 64 mm, Ry = 52 mm Gain HPD : ~ 3.103 (Uop= 12 kV ) or 5.103 (Uop = 20 kV) Lc sapphire window (n~1.8): (better light transmission) LYSO crystals (crystal-window refractive indices matching) • optical transport image 1 : 1 • segmented (4x4 mm2) silicon detector pads sapphire window Bi-alkali photocathode ring electrodes silicon sensor (each crystal readout by its pad, no cross-talk) • each pad with integrated lecture electronics (2 VATA-Gp5) readout chips “Reference Radial PET”: The High Resolution Research Tomograph (HRRT) (CTI, MPI, Karolinska …) K. Wienhard et al., IEEE Trans. Nucl. Sci. 49 (2002) 104–10 •ANGER LOGIC: a block seen by 4 PMTs CM of signals in 4 PMTs interac. point (x,y) of g PMT1 PMT2 AFOV 25 cm •DOI (z) from PHOSWICH tecnique Pulse Shape Discrimin. (PSD) Lc LSO 7.5 31 cm LSO g 7.5 z g x • 8 panels with 9 13 blocks • 2 64 crystals per block • 120000 crystals 2.12.1x7.5mm3 • 936 (20x20 mm2) PMTs Dt = 7 ns 88 matrix (2x2 cm2) 4PMTs y Dz (FWHM) ~ 5 mm DV= (FWHM) ~ 20 mm3 Lc =15mm ~ 1 la e2g(⊥)~ 53% DE/E (511 keV) ~ 17% Heavy electronics (PSD) Inorganic Scintillation crystals Criteria to be taken into account: light yield, absorption length, photofraction, self absorption, decay time, availability, machinability, price. YAP:Ce LSO:Ce LuAP:Ce LaBr3:Ce 5.55 7.4 8.34 5.3 7.13 32 66 65 46.9 75 Scintillation light output (photons / MeV) 18000 23000 ~10000 ~61000 ~9000 wavelength lmax of max. emission (nm) 370 420 370 356 480 Refractive index n at lmax 1.94 1.82 1.95 ~1.88 ~2.15 Bulk light abs. length lbulk (cm) at lmax ~20 ~40 27 40 18 30±5 300 22.4 11.5 10.5 ~20 ~11.6 Photo fraction at 511 keV (%) 4,5 32.5 30.5 15 41.5 Energy resolution (FWHM) at 663 keV 4.5 8 Density ρ (g/cm3) Effective atomic charge Z Principal decay time (ns) Mean γ atten. length la at 511keV (mm) 2.9 LSO (LYSO) is the most interesting crystal scintillator : fast (40 ns), short att. length (~12mm) at 511keV, high photofraction (32%), not hygroscopic, but high intrinsic energy resolution (~ 5% FWHM) BGO 1) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT High Granularity exact reconstruction of the • • g interaction point (no parallax error) HPD1 x,y from fired scintillator σ(x,y) = 3.2 mm/√12= 0.92 mm Dx,Dy (FWHM) = 2.2 mm z (DOI) from the ratio of the photoelectrons detected at the two crystal ends z σ(z) linked to the scint. choice Reduced # of photodet., scint., electr. (12 module PET: only 24 HPDs) y (Ry) x (Rx) g No limit to module radial (x,y) dimension higher efficiency Double scatt. events in one module (Compton-photoel.) reconstruction higher efficiency HPD2 208 4 x 4 mm2 Si ‘pads’ centred on crystal matrix g 2) ADVANTAGES OF THE AXIAL HPD-PET CONCEPT possibility to reconstruct the int. point of part of g’s that suffers a double (Compton + photoelectric) event in the same module COMPTON + PHOTOELECTRIC events- ~ 25% Compton events (50 keV [energy cut] < E < 170 keV) followed by a photoelectric one in the same module can unambiguously be reconstructed detection efficiency increases but spatial (DOI) resolution worsens Lc, leff, No: KEY PARAMETERS OF THE HPD-PET CONCEPT • Lc: crystal length leff: attenuation length of scint. • photons HPD1 1/leff = 1/(lbulk* cos q) + c’/(cabs) • No: light yield ≡ p.e.’s (511keV g) in a Lc~0 crystal (nph/keV, sci.ph.transport, q.e. & wind. of photodet.) σz, σE/E, σt : N1 z N0 , exp l 2 eff 1 N z leff ln 1 LC , 2 N2 E E Z (only statistical) N2 ( LC z ) N0 , exp l 2 eff T cabs 1/ 2 ENF leff exp z exp LC z , z leff leff 2 N o ENF Rint , N pe g N pe ( z N1 N 2 . g q c , N pe a) crystal axial length (Lc) worsens all resolutions limit of Lc: 10 ~ 15 cm HPD2 b) light yield (No) improves all resolutions c) contrasting effects of leff on σz & σE/E, σt optimize leff value by wrapping or coating the crystal lateral surface PROOF of the HPD-PET CONCEPT with YAP and LYSO crystals and PMTs BaF2 (used with a 22Na source) Pb collimator Pb + source YAP (Preciosa Co) LYSO (Photonic Materials) (3.2 x 3.2 x 50-150 mm3) • PMT H3164-10 (F=8mm, nw=1.47,bialkali) • B8850Quantacon(F=5cm,nw=1.47,bialkali) linear translator M-511(Phys.Instrum.) polished 3x3x100 mm3 YAP-LYSO comparison z=1 cm photoelectric peak (511 keV) z = 5 cm z =9 cm Compton 22Na source YAP+H3164-10 QL+QR (5cm)= 1692 ch ~ 10% ΔE/E(FWHM) ~ 14% LYSO+H3164-10 QL+QR (5cm)= 2295 ch LYSO produces more light (pe’s) than YAP LYSO has a higher photofraction, lower energy resolution than YAP leff in polished(n2=1) 3x3x100 mm3 YAP-LYSO No/2 lLYSO= 42.6±0.9 cm QL exp(-z/leff), ≈ n1/n2, n1/nW 1/z2 ≈ n1/nW lYAP= 20.8±0.4 cm LYSO more transparent (higher leff than YAP) too high l-eff values (poor z) both for LYSO and YAP No/2 Crystal wrappings or metal-coatings change light attenuation length of a YAP (3.2 x 3.2 x 100 mm3) polished QL best solution at z=0: N0(teflon) > N0(polished) (diffusing wrapping) leff (polished) / leff(teflon) = 1.9 possibility to tune leff value with metal coatings metal coating (n2) reduces No E/E, z, tdc (z=5cm) in coated 10cm YAP & LYSO (511 keV) YAP a) statistical b) phenomen. NO = 510±18 pe NO = 753±34 pe E E Stat z ENF R int N 0e z / l l ENF 2N0 t a' 2 ez /l c' e mz / l vs leff LYSO NO = 724±34 pe very low leff in a Lc=5 cm YAP with raw (smeared) lateral surfaces no exp behaviour of Q1 (fermi function) no coincident Q1-Q2 signals in a Lc = 10 cm YAP very low leff , but dependent with z good z but z-dependent, bad E/E z , E/E in coated-smeared YAP & LYSO vs z, leff, Lc, Eg crystal length worsens z, does not influence much E/E worse z and E/E values at lower Eg very low leff (raw lat.surf) values Lc limited, z-dep. of z Geant4 simulations for YAP long crystals + PMTs long and thin cylindrical crystal (n1, Nph/keV) lat.surface: polished, smeared (), wrapped (nwrap), coated (nwrap,ik,t) polished bases coupled to PMTs (nwin, t,q.e.) Polar diagram of reflected-refracted scintillation photons I incident unpol. opt. photons A absorption R T reflection transmission D Lambertian diffusion SR diffuse reflect. (smear) ST diffuse transmiss. nwrap (nwin=1.47) nwin (nwrap=1.0) *refr.ind.match * nwrap does not change leff decreases No worsens E/E, z, t nwin decreases leff increases No improves E/E, z, t absorption diffusion smearing absorp. & diffus. •similar effects •decrease leff (diff. increases No) •improve z •worsen E/E, t smearing •to be avoided (N1 no more exp.) Geant4 reproduction of exp. results YAP + H3164-10 PMTs Geant4 predictions for engraved crystals mechanical or laser ablation engravings (effects similar to absorp.) •decrease leff •improve spatial resol. •worsen energy-time resol. & • high reproducibility to the N0 and leff values of the many HPD-PET crystals HRRT vs. HPD-PET AFOV 25 cm Full ring scanner A possible final configuration for a HPD-PET 31 cm 8 panels 9x13 blocks 12 modules F = 31 cm F = 34 cm AFOV = 25 cm Lc = 15 cm 120000 crystals 2.1x2.1x7.5mm3 2496 crystals 3.2x3.2x150mm3 936 PMTs 2x2cm2 24 5” rect. HPDs det.Vol. 3962cm3 det.Vol. 3834cm3 det.depth 15mm det.depth 41mm DW/4p ~ 0.344 DW/4p ~ 0.165 eTOT (LSO)(%) (exp) ~ 6.9 eTOT(LSO) (%) ~ 8.5 (ph) + 7.5 (Co-rec) eTOT(LaBr3)(%) ~ 1.9 (ph) + 4.9 (Co-rec) z y x HPD-PET(Lc=10cm) vs HRRT crystal H P D P E T H R R T e x P M C e x P nw No (pe) leff (cm) FWHM (mm) (%) Dz DE/E FWHM YAP polish 1.47 950 21 19.3 10.8 YAP teflon 1.47 1120 10.5 12.7 11.2 LYSO polish 1.47 1200 42 34.5 14.6 LYSO teflon 1.47 750 20 22.1 16.4 YAP polish 1.8 1500 16 8.9 8.9 YAP teflon 1.8 1640 9 7.7 9.4 5 17 LSO