Transcript Document
Wigner Distributions in Light-Cone Quark Models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia Outline Generalized Transverse Momentum Dependent Parton Distributions (GTMDs) FT b Wigner Distributions Results in light-cone quark models unpolarized quarks in unpolarized nucleon Quark Orbital Angular Momentum Generalized TMDs GTMDs Complete parametrization : 16 GTMDs at twist-2 [Meißner, Metz, Schlegel (2009)] Fourier Transform : 16 Wigner distributions [Belitsky, Ji, Yuan (2004)] x: average fraction of quark longitudinal momentum »: fraction of longitudinal momentum transfer k?: average quark transverse momentum ¢: nucleon momentum transfer 2D Fourier transform GTMDs Wigner distribution TMDs TMSDs TMFFs PDFs GPDs FFs Spin densities Transverse charge densities ¢ =0 Charges [ Lorce, BP, Vanderhaeghen, JHEP05 (2011)] Wigner Distributions Transverse [Wigner (1932)] [Belitsky, Ji, Yuan (04)] [Lorce’, BP: PRD84 (11)] QM QFT (Breit frame) QFT (light cone) Longitudinal Heisenberg’s uncertainty relations Quasi-probabilistic GPDs TMDs GTMDs Third 3D picture with probabilistic interpretation! No restrictions from Heisenberg’s uncertainty relations Wigner Distributions Wigner distributions in QCD: at »=0 ! diagonal in the Fock-space N N N=3 ! overlap of quark light-cone wave-functions real functions, but in general not-positive definite not probabilistic interpretation correlations of quark momentum and position in the transverse plane as function of quark and nucleon polarizations no known experiments can directly measure them ! needs phenomenological models Light-Cone Quark Models LCWF: invariant under boost, independent of P internal variables: [Brodsky, Pauli, Pinsky, ’98] momentum wf spin-flavor wf rotation from canonical spin to light-cone spin Bag Model, ÂQSM, LCQM, Quark-Diquark and Covariant Parton Models Common assumptions : No gluons Independent quarks [ Lorce, BP, Vanderhaeghen, JHEP 05 (2011) Lorce, BP, arXiv:1104.5651 ] Light-Cone Constituent Quark Model momentum-space wf [Schlumpf, Ph.D. Thesis, hep-ph/9211255] parameters fitted to anomalous magnetic moments of the nucleon : normalization constant spin-structure: free quarks (Melosh rotation) SU(6) symmetry Applications of the model to: GPDs and Form Factors: BP, Boffi, Traini (2003)-(2005); TMDs: BP, Cazzaniga, Boffi (2008); BP, Yuan (2010); Azimuthal Asymmetries: Schweitzer, BP, Boffi, Efremov (2009) Example: Unpol. up Quark in Unpol. Proton (1 out of 16) Transverse [Lorce’, BP, PRD84 (2011)] Longitudinal Generalized Transverse Charge Density fixed angle between k? and b? and fixed value of |k?| T k b? q Example: Unpol. up Quark in Unpol. Proton (1 out of 16) Transverse Longitudinal fixed = 3Q light-cone model [Lorce’, BP, PRD84 (2011)] Example: Unpol. up Quark in Unpol. Proton (1 out of 16) Transverse Longitudinal fixed unfavored 3Q light-cone model [Lorce’, BP, PRD84 (2011)] favored = Example: Unpol. up Quark in Unpol. Proton (1 out of 16) Transverse Longitudinal 0.1 GeV² 0.2 GeV² 0.3 GeV² 3Q light-cone model [Lorce’, BP, PRD84 (2011)] 0.4 GeV² up quark down quark left-right symmetry of distributions ! quarks are as likely to rotate clockwise as to rotate anticlockwise up quarks are more concentrated at the center of the proton than down quark integrating over b ? transverse-momentum density Monopole integrating over k ? charge density in the transverse plane b? [Miller (2007); Burkardt (2007)] Distributions Transverse Charge Distribution unpolarized u and d quarks in unpolarized proton neutron proton charge distribution in the transverse plane [Miller (2007); Burkardt (2007)] Quark Orbital Angular Momentum Wigner distribution for Unpolarized quark in a Longitudinally pol. nucleon Orbital Motion in the Transverse Space 0.6 down quark: -0.6 -0.6 0 0 0.6 up quark: --0.6 0 0.6 -0.6 Lorce,B.P., Xiang, Yuan, in preparation 0 0.6 Quark OAM: Partial-Wave Decomposition eigenstate of OAM Lzq = ½ - Jzq Lzq = -1 Lzq =0 Lzq =1 Lzq =2 Jzq :probability to find the proton in a state with eigenvalue of OAM Lz squared of LCWFs Quark OAM: Partial-Wave Decomposition OAM Lz=0 Lz=-1 Lz=+1 Lz=+2 TOT UP 0.013 -0.046 0.139 0.025 0.131 DOWN -0.013 -0.090 0.087 0.011 -0.005 UP+DOWN 0 -0.136 0.226 0.036 0.126 <P" |P"> 0.62 0.136 0.226 0.018 1 distribution in x of OAM TOT up Lz=0 Lz=-1 Lz=+1 Lz=+2 Lorce,B.P., Xiang, Yuan, in preparation down Quark Orbital Angular Momentum from Wigner distributions: intrinsic OAM with respect to centre of momentum from TMD: OAM with respect to the origin of axis in the transverse plane model-dependent relation bag model light-cone diquark model [Avakian, Efremov, Schweitzer, Yuan, PRD81 (2010)] [She, Zhu, Ma, PRD79 (2009)] all quark models with spherical symmetry in the rest frame [Lorce’, BP, Xiang, Yuan, in preparation] from GPDs: Ji’s sum rule [Ji, PRL78 (1997)] What is the relations among these three definitions? All three definitions give the same results for the total-quark contribution to OAM but not for the individual flavor contribution the three definitions refer to OAM calculated with respect to different points n-th parton contribution: Total-quark contribution: OAM UP DOWN TOT 0.131 -0.005 0.126 0.169 -0.042 0.126 0.071 0.055 0.126 Summary GTMDs $ Wigner Distributions - the most complete information on partonic structure of the nucleon General Formalism for 3-quark contribution to GTMDs - applicable for large class of models: LCQMs, ÂQSM, Bag model Results for Wigner distributions in the transverse plane - anisotropic distribution in k? for unpolarized quarks in unpolarized nucleon - non-trivial correlations between b? and k? due to orbital angular momentum Orbital Angular Momentum from phase-space average with Wigner distributions - comparison with different definition from TMDs and GPDs ! they are all equivalent for the total-quark contribution to OAM Integrating over b ? Integrating over k ? charge density in the transverse plane b? neutron proton charge distribution in the transverse plane [Miller (2007); Burkardt (2007)] LC helicity amplitudes nucleon ( ¤’ ¤ ) quark ( ¸’ ¸ ) LC helicity $ canonical spin Independent quarks LC helicity canonical spin rotation around an axis orthogonal to z and k Light-Cone Helicity and Canonical Spin LC helicity Light-Cone CQM (Melosh rotation) canonical spin rotation around an axis orthogonal to z and k Chiral Quark-Soliton Model Bag Model º ! quark polarization ¹! nucleon polarization ( 16 GTMDs Active quark : Spectator quarks : Model Independent Spin Structure ) Backup 3/2 ¼ k k 0.1 GeV k 0.2 GeV 0.3 GeV 0.4 GeV k T ¼ T ¼/2 Unpolarized u quark in unpolarized proton T 0 , q fixed T µ T k Generalized Transverse Charge Densities T k = + µ=0 T k fixed Unpolarized u quark in unpolarized proton µ = ¼/2 Wigner function for transversely pol. quark in longitudinally pol. nucleon b k ,µ fixed k T sx T-odd q µ = ¼/2 µ=0 T Wigner function for transversely pol. quark in longitudinally pol. nucleon Dipole T k sx fixed Monopole µ=0 µ = ¼/2 Monopole + Dipole 3/2 ¼ k k k 0.1 GeV 0.2 GeV 0.3 GeV k T ¼ T ¼/2 u quark pol. in x direction in longitudinally pol.proton T 0 , q fixed T µ T k 0.4 GeV Integrating over k ? Integrating over b ? sx density in the transverse plane k? of transversely pol. u and d quark in longitudinally pol nucleon up BP, Cazzaniga, Boffi, PRD78 (2008) Lorce`, BP, in preparation down Haegler, Musch, Negele, Schaefer, Europhys. Lett. 88 (2009)