Transcript Document
INA Noise Analysis Created By: Arthur Kay, Texas Instruments Senior Applications Engineer 1 Introductions • • • • • • • Art Kay, Applications Engineering Texas Instruments Mixed Signal “System-on-a-Chip” Bridge Sensor Signal Conditioning Evaluation Modules (hardware / software) Noise Northrop Grumman, Burr-Brown (Test Engineering) Cleveland State, Georgia Tech Grad. 2 Summary • • • • • Short Review of INA’s Noise model for INA’s Hand analysis of INA’s Simulation Application Example – Averaging – Calculation, simulation, measurement 3 We will terminate the noise sources. 4 5 Three OPA INA Gain Set Resistor Vin- 5V Rg 1k Vin- = 2.499V + - 150k 150k A1 - 50k A3 + 50k Output Voltage Vin_dif = 2mV + Vin+ Differential Input Voltage Vout Vin+ = 2.501V 150k 150k A2 Reference Input 6 Real World Input to Mathematical Model Vcc Vdif Vinp + Vinn Vcm = 2 + Vinn -Vdif 2 + + Vinp Vdif 2 7 Analyze the Input and Output Separately -Vdif 2 VinVa1 + 150k + - 150k A1 50k - Rg 1k VCM + Vdif 2 Vout + 50k + + A3 150k A2 150k Va2 Vin+ Input Stage Differential Gain Stage Output Stage Dif Amp 8 Split Input Stage in Half -Vdif 2 Va1 Vin- + -Vdif 2 VCM Vin- + + - A1 Rg 1k A1 Split Input Stage 50k Rg 2 + VCM + Vdif 2 Va1 Rf Rg 2 + + + - VCM 50k VCM R Vdif 1+2 f Rg 2 + Vin+ Rf - A2 Va2 Input Stage Differential Gain Stage Vdif 2 + Vin+ VCM + + A2 Va2 R Vdif 1+2 f Rg 2 9 Use Superposition on Output Amp Va1 Va1 R3 150k R3 150k Va1 R5 150k Va1 Inverting Amp Gain = -1 - Vin_dif Va2 A3 R3 150k R6 150k Va2 Output Stage Dif Amp A3 - Vout + -Va1 Vout + R4 150k R5 150k Non-inverting Amp Gain = 2 Voltage Divider Gain = 1/2 Va2 Va2 R5 150k + R4 150k Va2 Vref + 2 2 A3 Vout Va2 + Vref R6 150k Vref Find Vout Through Superposition Vout = Va2 – Va1 + Vref 10 Gain For Three Amp IA Rf Va1 Vcm 1 2 2 Rg [1] Input Stage Top Half Rf Va2 Vcm 1 2 2 Rg [2] Input Stage Bottom Half Vdif Vdif Vout Va2 Va1 Vref Vout Vdif Rf Vdif Rf Vcm 2 1 2 R Vcm 2 1 2 R Vref g g Vout Rf Vdif 1 2 Vref Rg [3] Output Stage Substitute [1] and [2] into [3] [4] Simplify 11 12 Review of Key Noise Concepts • Noise From 2 Independent Sources is Called UNCORRELATED noise • Uncorrelated Noise Sources Add By RSS (Root Sum of Squares) • Good Approximations Greatly Simplify Noise Analysis • Noise Given in Typical Values and can vary 10-20% 13 Key Noise Equations 1/f Or “Flicker” Noise Broadband enBB eBB kn f efnorm enlf flf fH en f efn orm l n fL Current Noise ina in kn f Thermal Noise in Resistor Total Voltage Noise 2 2 entot enBB enf 14 15 Complex Noise Model -Vdif 2 Vin- + + - Rg 1k VCM + Noise Sources are Voltage Noise, Current Noise, and Thermal Noise From Resistors Va1 A1 150k 50k 150k - A3 Vout + 50k - Vdif 2 + + 150k 150k A2 Va2 Vin+ 16 The Complex Model is Simplified Input Stage in_out Input gain = G Output Stage Vn_out Output gain = 1 Vout Input Stage Noise Modeled as Current and Voltage noise; Output stage lumps all noise sources into 1 Vn_out Source Vn_in in_out Vn_RTI Total gain = G Vout Vn _o ut2 Vn _i n G2 Vn _INA ou t Vn _RTI Vn _o ut G 2 Vn _i n2 17 The Input amplifier dominates at High Gain From INA333 Data Sheet G Total InputReferred Noise (nV/rtHz) Total Output Noise (nV/rtHz) 1 206.2 206.2 2 111.8 223.6 5 64 320 10 53.9 539 100 50 5000 1000 50 50,000 18 Two Ways to represent INA Spectral Density From INA333 Data Sheet From INA128 Data Sheet G Input-Referred Noise (nV/rtHz) G Input-Referred Noise (nV/rtHz) 1 110 1 206.2 10 12 10 53.9 100 8 100 50 1000 8 1000 50 Taken directly from the graph Calculated using graphs and formula 19 20 Find the total RMS Noise Voltage at the Output +V= 5V 5V Vin- = 2.499V + A1 - 150k 150k Rg 1k 5k 5k Vss 50k INA333 Vout A3 + 5k 5k 50k - Vin_dif = 2mV - 150k 150k A2 + Vss Vin+ = 2.501V 5V -V= GND 100k + 100k Application example with bridge sensor and ½ supply reference buffer 21 Look at Noise Sources: Bridge, INA333, Reference Buffer +V= 5V 5V Vin- = 2.499V 150k + A1 - 150k Rg 1k 5k 5k Vss 50k INA333 Vout A3 + 5k 5k 50k - Vin_dif = 2mV - 150k 150k A2 + Vss Vin+ = 2.501V 5V -V= GND Each Piece of the Application Contributes Noise to the Output Voltage 100k + 100k 22 Noise Equivalent Model for Reference Pin Buffer 5V 5V 5V Vref_pin OPA333 100k + 100fA/rtHz + 55nV/ rtHz 30nV/rtHz 100k 100k || 100k OPA333 - Vref_pin 50k 23 Reference buffer 23 kn 1 .381 0 Boltzmann’s c onst ant Tk 2 73 2 5 Temperat ure in Kelv in Req 5 0k 4kn Tn Req en _r in 1 00 en _i fA 2 8.7 nV Thermal N oise f rom input res ist or Hz C urrent noise f rom OPA333 Hz in Req en _o pa en _ref I nput res is tanc e (parallel c ombination of v oltage div ider) 55 5 nV Voltage N oise f rom c urrent noise Hz nV Voltage noise f rom OPA333 Hz 2 2 2 en _o pa en _r en _i 6 2.2 nV Hz Tot al rms noise f rom ref erenc e driv er circ ui 24 The reference voltage directly adds to the output noise Output Stage Input Stage in_out Input gain = G Vn_in Vn_out Σ en_ref 9 en _ref 6 2.21 0 9 Vn _o ut 2 001 0 2 Vout Output gain = 1 2 Reference buffer noise adds directly to diff amp noise stage 9 O ut pu t_ St ag e_N oi se en _ref Vn _o ut 2 09 .44 9 1 0 25 The bridge generates: thermal noise, in x R_bridge en_r R/2 inn - Vcc R R + inn R R Use superposition to combine noise sources on the negative and positive input. + inp en_r R/2 + inp 26 Noise From Bridge / Current Sources Vcc 5k 5k R in n 2 Voltage noise f rom current nois e en _rb R 4kn Tn 2 U se s uperpos ition to add the nois e f rom t he input res ist ance and both c urrent noise sources inn 5k INA333 5k R es ist or N oise 2 ei n_ i + inp 2 i R e n n n _rb 2 As sume in n in p N ot e that t hes e sourc es are unc orrelated 2 ei n_ i RSS noise contributions from the resistor bridge and the effect of INA333 current noise on the resistor values 2 2 i R e n p n _rb 2 R 2 2 in 2 en _rb 2 Tot al Noise f rom input res ist ors and c urrent source For this ex ample (R=5kO, in = 100f A/rtH z) nV R es ist or noise en _rb 6 .4 R in n 2 0 .25 ei n_ i 2 ( 0 .5) 2 ( 9 .1) Hz nV Voltage noise f rom current nois e Hz 2 2 9 .1 nV Hz Tot al Noise f rom input 27 res ist ors and c urrent source Combine all the noise sources Sensor Noise 9nV/rtHz Input Stage Noise Output Stage Noise 50nV/rtHz 200nV/rtHz +V= 5V Vin- 5V + - 150k 150k A1 Rg 1k 5k 5k 50k INA333 5k 5k 50k Vin+ 150k A2 - Vout A3 + 150k + Reference Buffer Noise 62nV/rtHz Vss 5V -V= GND 100k OPA333 + 100k 28 Rule of 3x in Noise Analysis Vn 6 1 . 3 Vn 3Vn 3 Vn 2 Vn 2 2 9 Vn Vn 2 3.16Vn Dominant Neglect When adding two uncorrelated noise terms, the larger term will dominate if it is 3 times larger then the smaller term. You can neglect the smaller term with a relatively small error (i.e. 6%). 29 For this example compute noise spectral density refered to the input 2 Noise_Spec_Den_RTI Vn_ref_buf 2 2 Vn_out_stage Vn_in_stage Vn_bridge G G Noise_Spec_Den_RTI 200 62 ( 50) ( 9) 100 100 2 Dominant 2 2 Neglect 2 50.847 2 nV Hz Approximately equal to the dominant term 30 Bandwidth from Data Sheet For G = 100 20dB/decade 1st order Kn = 1.57 “Noise Bandwidth” (BWn) approximates the bandwidth over which the noise spectral density contributes to the total noise 31 Calculate RMS Output Noise for INA333 From Voltage Noise G 1 00 Vi n_ RTI 5 0.8 5n V/rtH z From "I nput ref erred nois e" equat ion fH 3 .5k Hz From data s heet table f or gain = 100 Kn 1 .57 For f irs t order f unc tion See Gain v s Frequenc y in the dat a s heet BWn en _o ut fH Kn 5 .49 5k Hz G Vi n_ RTI BWn en _o ut P P 6 .en _o ut N ois e Bandwidt h 3 76 .9Vrms 2 .26mVp p R MS Output Noise Peak -t o-Peak Out put 32 To recap… In high gains we can Terminate the noise contribution of the sensor, reference buffer, and output stage with little effect on the total output noise Sensor Noise 9nV/rtHz Input Stage Noise Output Stage Noise 50nV/rtHz 200nV/rtHz +V= 5V Vin- 5V - 150k 150k A1 50k Rg 1k 5k 5k + INA333 5k 50k 5k Vin+ 150k A2 - Vout A3 + 150k + Reference Buffer Noise 62nV/rtHz Vss 5V -V= GND 100k OPA333 + 100k 33 34 Simulate the Circuit DC operation first ensures a good result VIN_N 2.5V R3 5k RG U1 INA333 VVout 2.5V Out RG R5 5k Ref V+ + VIN_P 2.5V Vref 2.5V Vcc Vcc + Vjunk 0V VG1 0 Vcc V4 5 Noise Analysis in TINA can only be performed if AC source is present + U2 OPA333 + R6 100k R4 5k R1 100 - R7 100k R2 5k Vcc Vcc 35 Using Tina Spice Output Noise = Noise Spectral Density Total Noise = RMS output Noise 36 Noise Spectral Density at the Output Voltage Spectral Density Out vs. Frequency 10.00u 5.2uV/rtHz Vout Vout (V/rtHz) T -3db @ 3.91kHz 10.00n 1 10 100 1k 10k 100k 1M Frequency (Hz) 37 Total RMS Noise at the Output T Vn output Total RMS Noise (Vrms) 500u Simulation = 422uVrms Hand Calc = 377uVrms 375u 250u 125u 0 1 10 100 1k 10k 100k 1M Frequency (Hz) 38 Why doesn’t calculation match simulation exactly? Bandwidth from Data Sheet and simulated bandwidth is different. Voltage Spectral Density Out vs. Frequency 10.00u 5.2uV/rtHz Vout Vout (V/rtHz) T The roll-off was approximated as first order in the calculations. Simulation shows that it is not first order. -3db @ 3.91kHz 10.00n 1 10 100 1k 10k Frequency (Hz) 100k 1M 39 40 Say “Hasta la vista, baby” to nano-volts of noise with averaging! 41 Averaging Circuit Rf R1 V1 Vcc - Vout R2 + V2 OPA335 Vss R3 •Inputs V1-Vn assumed are noise sources •R1-Rn assumed to be of EQUAL value •Feedback Resistor Rf scaled based on the # of equal-valued input resistors Vref V3 RN VN Vout V1 V2 V3 Vref Rf ... R1 R2 R3 VN RN [15] For an averaging circuit choose R1 = R 2 = R 3 = ... R N = R Rf = R / N Vout Vref V1 V2 V3 ... VN [16] N 42 Noise in Averaging Circuit v noise_output vnoise1 N 2 vnoise2 N 2 vnoise3 N 2 vnoiseN ... N 2 Where v noise1 , vnoise2 , vnoise3 , ... vnoiseN are noise sources If you assume that v noise1 , vnoise2 , vnoise3 , ... vnoiseN are equal uncorrelated noise sources, then v noise_output vnoise N N 2 v noise N 2 v noise N [17] 43 Averaging Circuit with INA333 Vss + Vdif 2.4mV R1 100 2 1 4 U1 RG V- R4 100k INA333 8 Out Ref 6 RG V+ 3 2.5V _ 72uA 24uA 5 + R7 33.3k 7 V2 2.5 Vcc Vref Vss Vss R2 100 2 •Acts as a Single INA333 - 4 U2 RG V- 8 Vout + U4 OPA335 Out Ref 6 RG V+ Vcc 24uA Vref 5 + + R5 100k INA333 3 7 2.4V Vref Vcc Vref Vss 2 R3 100 •R4-6 selected to limit output current to design-specific value 1 _ 1 _ 4 U2 RG V- R6 100k INA333 8 Out Ref RG V+ 3 6 24uA 5 + 2.4V 7 Vcc Vref Vref 44 Experiment with 20 Parallel INA333 Socketed Gain Set Resistors 20 INA333 amps in parallel (jumper selectable) OPA333 Averaging Circuit 45 Standard Noise Measurement Precautions Linear Power Source Steel Paint Can for Shielding 46 Total Output Noise vs Number of Amplifiers Being Averaged Noise vs Number of Amplifiers 0.0016 Total Output Noise (V rms) 0.0014 measured 0.0012 ideal (from tina) 0.001 0.0008 0.0006 0.0004 0.0002 0 0 5 10 15 20 Number of Amplifiers in Average Circuit 47 Measured Noise Spectral Density vs Number of Averages 1.E-05 Avg = 1 Avg = 2 Avg = 5 1.E-06 Avg = 15 Avg = 20 1.E-07 1 10 100 Frequency (Hz) 1000 10000 Simulated Noise Spectral Density vs Number of Averages 1E-4 Output noise (V/rtHz) Measured vs simulated spectral density Output Noise (V/rtHz) 1.E-04 1E-5 Avg = 1 Avg = 2 Avg = 5 Avg = 15 Avg = 20 1E-6 1E-7 1 10 100 Frequency (Hz) 1k 10k 48 References 1. 2. [1] Hann, Gina. "Selecting the right op amp - Electronic Products." Electronic Products Magazine – Component and Technology News. 21 Nov. 2008. Web. 09 Dec. 2009. <http://www2.electronicproducts.com/Selecting_the_right_op_amp-articlefacntexas_nov2008-html.aspx>. Henry W. Ott, Noise Reduction Techniques in Electronics Systems, John Wiley and Sons Acknowledgments: 1. 2. 3. 8. R. Burt, Technique for Computing Noise based on Data Sheet Curves, General Noise Information T. Green, General Information B. Trump, General Information Matt Hann, General INA information and review Noise Article Series (www.en-genius.net) http://www.en-genius.net/site/zones/audiovideoZONE/technical_notes/avt_022508 49 I’ll be back. Next year with more exciting noise … Or something else… Noise = 1 trick pony. 50 Thank You for Your Interest in INA Noise – Calculation and Measurement Comments, Questions, Technical Discussions Welcome: Art Kay 520-746-6072 [email protected] 51 PSRR Equation Like CMRR INA2322: INA2321: 52 53