Transcript Slide 1
sigA strong sigA sigA weak hin invertase rcsA hixL LuxR CinR hixR LasR ter---GFP--RBS—rcsA-RBS-SigA-LuxR-hixL- SigA- RBS- Hin-terR-terL-hinR-LasR-SigA-RBS-CinR-RBS-RFP-ter(Strong) (Activator binding site) (Weak) (Activator binding site) Other BioBricks SigA- RBS- RECDS- ter This codes for the Recombinational Enhancer needed for Hin invertase to work SigA- RBS- Fis CDS- ter This codes for the Fis protein that forms a complex with RE to help Hin Invertase RBS-CinR CDS-ter This codes for the CinR activator protein that will activate our metal container genes SigA- RBS- autoinducer synthase CDS- ter This codes for a protein that makes a quorum sensing molecule which binds in a complex with CinR for Cin Promoter activation CinR Promoter- RBS- FimECDS- GutRCDS- CroCDS- SmtACDS- KinA CDS-ter Construct for metal container decision genes Ter-YFP-Fim-SigG promoter- SigE promoter-Fim-sleBCDS- CwlDCDS-ter Invertible promoter that controls germination gene expression List of all individual BioBricks: 1 2 Strong SigA -Lux box Weak SigA -Las box hix –sigA- RBS- hin CDS-ter-ter-hix 3 4 5 6 7 SigA- RBS- RECDS- ter SigA- RBS- Fis CDS- ter RBS-CinR CDS- RBS-RFP-ter SigA- RBS- autoinducer synthase CDS- ter CinR Promoter- RBS- FimECDS- GutRCDS- CroCDS- SmtACDS- KinA CDS-ter 8 Fim-SigG promoter- SigE promoter-Fim-sleBCDS- CwlDCDS-ter 9 10 RBS- rcsACDS-RBS-GFP-ter 11 SigA- RBS- LuxI CDS- ter 12 SigA- RBS- LasI CDS- ter Part sequences 1. SigA from promoter library- Lux box consensus from Antunes et al.2008 2 . SigA from promoter library- LasR-binding seq 3. Left hix (Bba_S03383)- sigA- RBS (BBa_K090505)- Hin+LVA (BBa_J31001)- ter-ter-Right Hix (BBa_S03384) 4. SigA from promoter library- RBS (BBa_K090505)- Recombinational enhancer (BBa_J3101)-ter 5. SigA from promoter library- RBS (BBa_K090505)- Fis Protein (http://www.ncbi.nlm.nih.gov/nuccore/242375837?from=3271637&to=3271933&report=gbwithparts)-ter RBS (BBa_K090505)- CinR CDS (BBa_C0077)-ter 6. 7. SigA- RBS (BBa_K090505)- Autoinducer synthase CDS (BBa_C0076)-ter 8. CinR promoter (BBa_R0077)- RBS (BBa_K090505)- Cro CDS (Roberts 1977 paper)-Smta CDS (brick.doc)kinA CDS (http://www.ncbi.nlm.nih.gov/nuccore/2632216?from=4382&to=6202&report=gbwithparts)- FimE CDS (http://www.uniprot.org/uniprot/P0ADH7.fasta)-ter 9. Fimsite (McCusker et al. 2008)- SigG promoter (DBTBS)-SigE promoter (DBTBS)- SleB CDS http://www.ncbi.nlm.nih.gov/nuccore/1146195?from=12631&to=13548&report=gbwithparts – CwlD CDS http://www.ncbi.nlm.nih.gov/nuccore/1177247?from=567&to=1280&report=gbwithparts. 10 RBS (BBa_K090505)- rcsA CDS (BBa_K137113)- ter 11 SigA- RBS- LuxI (NCBI)-ter 12 SigA- RBS- LasI (NCBI)-ter 4000 mRNA A rsR ArsR mRNA CzrA CinR 3500 CzrA mRNA CI MntH CI 3000 CI mRNA LuxRToxR Spo0A Cd LuxR mRNA Hin Hin ArsRCd 2500 CzrACd LasR mRNA HinToLeft 2000 mRNA RcsA RcsA mRNA CinR 1500 CinR TetR mRNA KinA KinA mRNA Spo0A 1000 Cro Spo0A mRNA SmtACroFimEGutR ArsR CadA 500 SmtA Cro FimE GutR mRNA MntH Hin LuxR 0 0 1000 2000 3000 4000 5000 MntH mRNA CadA CadA CdInside Cd_Out: 3000nM Metal Intake Decision:YES 25 mRNA A rsR ArsR mRNA CzrA CzrA mRNA CI CI mRNA LuxRToxR 20 LuxR mRNA Hin Hin ArsRCd mRNA-CinR 15 CzrACd LasR mRNA HinToLeft mRNA RcsA RcsA mRNA CinR 10 CinR TetR mRNA KinA KinA mRNA Spo0A Spo0A mRNA SmtACroFimEGutR 5 SmtA Cro FimE GutR mRNA MntH mRNA-RcsA 0 0 1000 2000 3000 4000 5000 MntH mRNA CadA CadA CdInside 450 mRNA A rsR ArsR mRNA CzrA 400 CzrA mRNA CI CI mRNA LuxRToxR 350 LuxR mRNA Hin 300 Hin ArsRCd CzrACd 250 LasR mRNA HinToLeft mRNA RcsA Hin 200 RcsA mRNA CinR CinR TetR mRNA KinA 150 KinA mRNA Spo0A 100 Spo0A mRNA SmtACroFimEGutR 50 SmtA Cro FimE GutR mRNA MntH mRNA-CinR mRNA-RcsA 0 0 1000 2000 3000 4000 5000 MntH mRNA CadA CadA CdInside 4000 mRNA A rsR MntH ArsR mRNA CzrA 3500 CzrA mRNA CI CI mRNA LuxRToxR 3000 LuxR mRNA Hin Hin ArsRCd 2500 CzrACd LasR mRNA HinToLeft 2000 mRNA RcsA RcsA mRNA CinR 1500 CinR TetR mRNA KinA CadA KinA mRNA Spo0A Cd 1000 Spo0A mRNA SmtACroFimEGutR ArsR SmtA Cro FimE GutR mRNA MntH 500 Hin LuxR 0 0 1000 2000 3000 4000 5000 MntH mRNA CadA CadA CdInside Cd_Out: 3000nM Metal Intake Decision:NO 14 mRNA A rsR ArsR mRNA CzrA CzrA mRNA CI 12 CI mRNA LuxRToxR LuxR mRNA Hin 10 Hin ArsRCd CzrACd 8 LasR mRNA HinToLeft mRNA RcsA RcsA mRNA CinR 6 CinR TetR mRNA KinA mRNA-RcsA 4 KinA mRNA Spo0A Spo0A mRNA SmtACroFimEGutR 2 SmtA Cro FimE GutR mRNA MntH mRNA-CinR 0 0 1000 2000 3000 4000 5000 MntH mRNA CadA CadA CdInside 450 mRNA A rsR ArsR mRNA CzrA 400 CzrA mRNA CI CI mRNA LuxRToxR 350 LuxR mRNA Hin Hin 300 Hin ArsRCd CzrACd 250 LasR mRNA HinToLeft mRNA RcsA 200 RcsA mRNA CinR CinR TetR mRNA KinA 150 KinA mRNA Spo0A 100 Spo0A mRNA SmtACroFimEGutR SmtA Cro FimE GutR mRNA MntH 50 mRNA-RcsA 0 0 1000 2000 mRNA-CinR 3000 4000 5000 MntH mRNA CadA CadA CdInside 25 mRNAA rsR ArsR mRNA CzrA CzrA mRNACI mRNA-CinR 20 CI mRNA LuxRToxR LuxR mRNAHin Hin ArsRCd 15 CzrACd LasR mRNAHinToLeft mRNA-RcsA mRNARcsA RcsA mRNACinR 10 CinR TetR mRNAKinA KinA mRNASpo0A Spo0A mRNASmtA CroFimEGutR 5 SmtA Cro FimE GutR mRNAMntH 0 0 500 1000 1500 2000 2500 3000 MntH 3500 mRNA 4000adA C CadA CdInside 4500 5000 4000 mRNAA rsR 3500 ArsR mRNACzrA mnTH CzrA mRNACI 3000 Spo0A CI mRNA LuxRToxR LuxR mRNAHin 2500 Cd Hin ArsRCd 2000 CzrACd LasR mRNAHinToLeft 1500 mRNARcsA CinR 1000 ArsR RcsA mRNACinR CadA 500 CinR TetR mRNAKinA Hin LuxR 0 0 1000 2000 3000 4000 5000 KinA mRNASpo0A Spo0A mRNASmtACroFimEGutR SmtA Cro FimE GutR mRNAMntH MntH mRNA adA Lab work: what we hope to prove 1. Need to show that the sequence flips in the presence of cadmium. We have added GFP and RFP expression to the left and right sides respectively so we can see when the sequence has flipped. 2. Need to show that there is a biased heads or tails effect happening- GFP should be expressed but a lot less than RFP in the presence of cadmium. 3. Need to show that the sequence doesn’t flip in the absence of cadmium 4. Need to show that we can trigger sporulation using the switch (KinA). 5. Need to show that we can prevent germination in the presence of cadmium (FimE) 6. Need to show that in the presence of cadmium the FimE invertase flips the promoter for the germination genes and this is why there is no germination (YFP). 7. Need to show that metallothionein will be located to the spore coat. 8. Test the switch without using the Cd in the lab. (By adding autoinducers of LuxR and LasR) Questions 1. We didn’t use the activator on the left hand side of the switch, as we think it won’t work due to decay of the proteins before they are needed. If they wouldn’t decay when they are in the spore then this would work. 2. Do we need a link between Spo0A and the metal container decision proteins? 3. How do we link sensing cadmium to the adjustment of sporulation? 4. When the metal container decision is ‘No’ we haven’t expressed a protein that will upregulate Cd efflux as we think this will happen in the cell anyway. As an alternative we could express a transcription factor that will repress ArsR and CzrA expression or an activator that can upregulate CadA (ToxR?) 5. Where to place the RE sequence? 6. Why are we choosing HixC of Wild type HixL/R (HixC is 16 fold slower than wt) (Davidson BioBrick- BBa_J44000 HixC) 7. Can we use cadmium in the Lab- otherwise to test our system we need another external control mechanism. Perhaps IPTG-LacI-TetR- CzrA/ArsR orinduce the activators on the left and right hand side of the switch. 8. Would that be better if we express LuxR and LasR constitutively and express LuxI and LasI upon Cd sensing? This might give us a quicker response.