Transcript Slide 1
Thevenin’s theorem, Norton’s theorem and Superposition theorem for AC Circuits 3/2/09 1 Problem10-60(b) 1. Find TEC at terminals c-d C 10 20V D -j4 4 0 4A 0 j5 0 TEC: Thevenin Equivalent Circuit 2 Problem10-60(b) (i) To obtain VTH + Voc - Vc 10 20V Vd -j4 4 0 4A 0 j5 0 Voc =VTH 3 Problem10-60(b) Nodal equations: nod c: Vc 20 10 nod d: Vd Vc 4j Vc 5j Vd 4 Vc Vd 4j 0 4 4 Problem10-60(b) Find Vc Vd Vd Vc Vcd Vc Vd Vcd 9.615 VTH Vcd Vd Vc 13.333 13.333i 8 5.333i Vcd 5.333 8i arg Vcd 56.31 deg VTH 5.333 8i 5 Problem10-60(b) ZTH (i) To obtain ZTH 10 -j4 j5 4 ZTH =[(10//j5)+4]//-j4 6 Problem10-60(b) In Mathcad: First we define a function to decribe the result of two parallel impedances: ZP( x y ) ZTH ZP ZP( 10 5i) 4 4i x y x y ZTH 2.667 4i ZTH 4.807 arg ZTH 56.31 deg 7 Problem10-60(b) (iii) Using TEC to find Vo Let + VTH + - ZTH ZL ZL = 10+j10 ZTH Vo VTH Z L ZTH Vo - Let’s assume, ZL 10 10j ZL ZTH 2.667 4i Vo VTH ZTH ZL Vo 9.701 VTH 5.333 8i Vo 2.353 9.412i arg Vo 75.964 deg 8 Problem10-60(b) 2. Find NEC at terminals c-d C 10 20V D -j4 4 0 j5 4A 0 0 NEC: Norton Equivalent Circuit 9 Problem10-60(b) (i) To obtain IN IN V1 10 20V -j4 4 0 4A 0 j5 0 10 Problem10-60(b) (i) To obtain IN V1 20 10 V1 5j V1 4 V1 Find V1 IN 20 V1 10 IN 2 4 V1 12.923 7.385i V1 5j IN 0.769 1.846i arg IN 112.62 deg 11 Problem10-60(b) (ii) To obtain ZN ZN = ZTH ZN = ZTH= 2.667 – j4 12 Problem10-60(b) (iii) Using NEC to find Vo Let’s assume, + IN ZN ZL IN 0.769 1.846i Vo - Vo = (ZN//ZL)IN ZN 2.667 4i Vo ZP ZN ZL IN Vo 9.701 ZL = 10+j10 ZL 10 10i Vo 2.353 9.412i arg Vo 75.964 deg 13 Problem10-60(b) 3. Find Vo using superposition theorem Vo + 10 10 20V j10 - -j4 4 0 4A 0 j5 0 14 Problem10-60(b) (i) 4A acting alone Vo1 + 10 V1 10 j10 V2 -j4 4 4A 0 j5 0 15 Problem10-60(b) Nodal Equations 1 1 1 1 V1 V1 V2 10 5j 4j 10 10j V2 1 1 V2 V1 4j 10 10j 4 Find V1 V2 V2 V1 Vo1 V1 V2 4 V2 V1 0 3.548 9.267i 7.167 0.869i Vo1 3.62 10.136i 16 Problem10-60(b) (i) 20V acting alone Vo2 + 10 V1 10 20V j10 V2 -j4 4 0 j5 0 17 Nodal Equations V1 20 10 V1 1 1 0 V1 V2 5j 4j 10 10j V2 V1 4j 1 Find V1 V2 V2 V1 Vo2 V1 V2 Vo Vo1 Vo2 Vo 9.701 V2 10 10j 4 1 V2 V1 0 7.747 3.91i 1.774 4.633i Vo2 5.973 0.724i Vo 2.353 9.412i arg Vo 75.964 deg 18 Find vo 1W 2H 4W + vo 2sin 5t 0.1F 5V 10cos 2t This circuit operates at the different frequencies: • w = 0 ; for the DC Voltage source • w = 2 rad/s ; for the AC voltage source • w = 5 rad/s ; for the AC current source 19 We must use superposition theorem Different frequencies problem reduces to single-frequency problem. vo vo1 vo 2 vo3 Due to 5V Due to 2sin 5t A Due to 10cos 2t V 20 (i) 5V (w = 0) acting alone 1W 4W + vo1 5V w=0; jwL = 0 ; Short-circuited 1/jwC = infinity ; Open-circuited 1 vo1 (5) 1V 1 4 21 (ii) 10V (w = 2 rad/s) acting alone Convert time-domain quantities to phasor quantities: 10 cos 2t 2H 0.1F o 100 jwL j 4 1 j5 j wC 22 (ii) 10V (w = 2 rad/s) acting alone j4 W 1W + vo2 100 1 V02 (100o ) 1 j4 Z 2.498 30.79o 4W -j5 W Z j 5 // 4 2.439 j1.951 In time domain: V02(t)=2.498cos(2t-30.79) 23 (iii) 2A (w = 5 rad/s) acting alone Convert time-domain quantities to phasor quantities 5 sin 5t 2H 0.1F o 50 jwL j10 1 j2 jwC 24 (ii) 2A (w = 5 rad/s) acting alone I1 J10 W 1W + vo3 20 j10 I1 (20o ) j10 1 Z 4W -j2 W Z j 2 // 4 0.8 j1.6 2.32810o V03 I1 1 2.32810o In time domain: V03(t)=2.328sin(2t+10) 25 Total response of the circuit: vo vo1 vo 2 vo3 v0(t)= -1 + 2.498cos(-30.79)+2.328sin(5t+10) Note that we can only add the individual responses in the time domain, not in the phasor. 26 Total response of the circuit: vo vo1 vo 2 vo3 v0(t)= -1 + 2.498cos(-30.79)+2.328sin(5t+10) Note that we can only add the individual responses in the time domain, not in the phasor. 27 Find vo 4W 1/12 F + vo 6 cos 4t 2H 6W 1W 2cos (4t+30) Case #1: This circuit operates at a single frequency. The sources are represented by a cosine function. 28 Convert time-domain quantities to phasor quantities: w = 4 rad/s o 60 6 cos 4t o o 2 30 2 cos(4t 30 ) 2H jwL j 8 1/12 F 1 j3 j wC 29 A phasor circuit -j3 W 4W 60 + vo - j8 W 6W 1W 230 30 Find vo 4W 1/12 F + vo - 2H 6W 1W 2sin (4t+30) 6 sin 4t Case #2: This circuit operates at a single frequency. The sources are represented by a sine function. 31 Convert time-domain quantities to phasor quantities: w = 4 rad/s o 60 6 sin 4t o o 2 30 2 sin( 4t 30 ) 2H jwL j 8 1/12 F 1 j3 j wC We use the sine function as the reference for the phasor. 32 A phasor circuit -j3 W 4W 60 + vo - j8 W 6W 1W 230 33 Find vo 4W 1/12 F + vo - 2H 6W 1W 2sin (4t+30) 6 cos 4t Case #3: This circuit operates at a single frequency. One source is represented by a sine function; Another source is represented by cosine function. 34 Convert time-domain quantities to phasor quantities. Use the cosine function as a reference. w = 4 rad/s o 6 0 6 cos 4t o o o 2 60 2 cos(4t 30 90 ) 2H jwL j 8 1/12 F 1 j3 j wC 35 OR Convert time-domain quantities to phasor quantities. Use the sine function as a reference. w = 4 rad/s 6 sin( 4t 90 ) o 2 sin( 4t 30 ) o 2H 1/12 F 6 90o 230 o jwL j 8 1 j3 j wC 36