Transcript Slide 1

States and transitions
Spectroscopy—transitions between energy states of a
molecule excited by absorption or emission of a photon
hn = DE = Ei - Ef
Energy levels due to interactions between parts of
molecule (atoms, electrons and nucleii) as described by
quantum mechanics, and are
characteristic of components involved, i.e. electron
distributions (orbitals), bond strengths and types plus
molecular geometries and atomic masses involved
Spectroscopic Regions
Typical wavelength
(cm)
-11
10
-8
10
-5
10
-5
3 x 10
-5
6 x 10
-3
10
-2
10
-1
10
0
10
10
Approximate energy
(kcal mole-1)
8
3 x 10
5
3 x 10
2
3 x 10
2
10
3
5 x 10
0
3 x 10
-1
3 x 10
-2
3 x 10
-3
3 x 10
-4
3 x 10
Spectroscopic region
Techniques and Applications
-ray
X-ray
Vacuum UV
Near UV
Visible
IR
Far IR
Microwave
Microwave
Radio frequency
MÖssbauer
x-ray diffraction, scattering
Electronic Spectra
Electronic Spectra
Electronic Spectra
Vibrational Spectra
Vibrational Spectra
Rotational Spectra
Electron paramagnetic resonance
Nuclear magnetic resonance
Adapted from Table 7-1; Biophysical Chemistry, Part II by
Cantor and Schimmel
Optical Spectroscopy - Processes Monitored
UV/ Fluorescence/ IR/ Raman/ Circ. Dichroism
Excited
State
(distorted
geometry)
Ground
State (equil.
geom.)
Diatomic Model
Analytical Methods
Absorption UV-vis absorp.
hn = E - E & Fluorescence.
grd
n0 nS
ex
Fluorescence
hn = Eex - Egrd
Raman: DE = hn0-hns
= hnvib
Infrared: DE = hnvib
Q
molec. coord.
move e- (change
electronic state)
high freq., intense
CD – circ. polarized
absorption, UV or IR
Raman –nuclei,
inelastic scatter
very low intensity
IR – move nuclei
low freq. & inten.
Optical Spectroscopy – Electronic,
Example Absorption and Fluorescence
Essentially a probe technique sensing changes in the local environment of fluorophores
eg. Trp, Tyr
Change with tertiary
structure, compactness
 (M-1 cm-1)
What do you see?
[protein example]
Intrinsic fluorophores
Amide absorption broad,
Intense, featureless, far UV
~200 nm and below
Optical Spectroscopy - IR Spectroscopy
Protein and polypeptide secondary structural obtained from
vibrational modes of amide (peptide bond) groups
Aside: Raman is similar, but different
amide I, little amide II, intense amide III
What do you see?
Model peptide IR
Amide I
(1700-1600 cm-1)
a
b
Amide II
(1580-1480 cm-1)
rc
Amide III
(1300-1230 cm-1)
I
II