Transcript Document

How to Build a
Neutrino Oscillations Detector
Why MINOS is like it is!
Alfons Weber
March 2005
Neutrino Oscillations
•
MINOS is a long baseline Neutrino Oscillation
Experiment
–
–
–
What do we want to measure?
We want to see, how one type of Neutrino transforms itself into
another.
There is a characteristic pattern,
if this is transformation is due to “neutrino mass eigenstates”
1 , 2

•
 or  
Simplified two neutrino scenario:
    cos
 
     sin 
March 2005
A. Weber
sin    1 
 
cos  2 
 1.27m2 L 
P(     )  1  sin (2 )sin 

E



2
MINOS Experiment
2
2
March 2005
A. Weber
MINOS Experiment
3
NuMI & The Main Injector
Fermilab Main Injector:
120 GeV protons
2.5 x 1013 protons/pulse
1.9 sec rep rate
(~8 sec spill)
 0.25 MW
NuMI Beam:
Graphite target
Two magnetic horns
675 m. vac. decay pipe
hadron absorber
designed for 4 x 1013 ppp
Beam Monitoring:
muon detectors
hadron detectors
+ Near Detector !
March 2005
A. Weber
MINOS Experiment
4
NuMI Beam Layout
March 2005
A. Weber
MINOS Experiment
5
Neutrino Production
120 GeV primary Main Injector beam
Target readily movable in beam direction
2-horn beam adjusts for variable energy ranges
675 meter decay pipe for p decay
March 2005
A. Weber
MINOS Experiment
6
MINOS Physics Reach
 Intense  beam from FNAL
Nominal Beam Configurations
- initially 2.5 x 1020 p.o.t./year,
(being commisioned now !!)
νµ CC Events/year
(with no oscillations)
Low Medium High
1,600
4300 9250
Beam spectra: M. Messier
March 2005
A. Weber
MINOS Experiment
7
Neutrino Interactions
• Charge current
–
–
–
–
electron
νμ
muon
tau
Can measure neutrino
energy
hadrons
μ
5m
• Neutral Current
– electron
– muon
– tau
νμ
hadrons
νμ
1.5 m
March 2005
A. Weber
MINOS Experiment
8
Oscillation Pattern
 1.27m2 L 
P(     )  1  sin (2 )sin 

E



2
m 2 
2
E
L
m 2  3 103 eV 2
measures m2
No Effect!
Smeared by
resolution
P ~ 1/2
March 2005
L  735 km
A. Weber
MINOS Experiment
9
MINOS Analysis
• Select νμ charge current events
and reconstruct neutrino energy
E  E  Eh
range, B field
calorimetric
 Energy resolution:
p / p  10%
Eh / Eh  60% / E
 Compare energy spectrum in
near and far detector
 Measure Δm2 and sin22θ
• Look for appearance of νe
Δm2
sin22θ
 beam & NC contamination
March 2005
A. Weber
MINOS Experiment
10
Where should the Experiment be?
• Δm2= 0.002-0.003 eV2 (from SK)
• In oscillation Minimum
L/E = 400 - 800 km / GeV
• Larger distance  shorter distance
• High energy
 low energy
• Flux
~ 1/L2
• Cross section ~ E
• Event size ~ E
March 2005
A. Weber
MINOS Experiment
11
The MINOS Experiment
• NuMI beam travels 735 km
to Soudan (MN)
• Sagitta:10 km
• 1 km wide at destination
March 2005
A. Weber
MINOS Experiment
12
March 2005
A. Weber
MINOS Experiment
13
Detector
• Design requirements
– High Mass
– High segmentation
– Affordable
March 2005
A. Weber
MINOS Experiment
14
MINOS Detectors
• There are 3 MINOS Detectors
– Near Detector
– Far Detector
– Calibration Detector
@ FNAL
@ Soudan
@ CERN
(ND)
(FD)
(CalDet)
• Magnetised steel scintillator tracking calorimeter
– Alternating planes of steel and scintillator strips
5.4 kton
March 2005
A. Weber
MINOS Experiment
0.9 kton
12 ton
15
Soudan Underground
Laboratory
• former iron mine, now a state park,
– home of: Soudan-1 & 2 , CDMS-II , and MINOS expts
March 2005
A. Weber
MINOS Experiment
16
MINOS Construction Challenge
March 2005
A. Weber
MINOS Experiment
17
MINOS Plane
2-m wide,
0.5-inch thick
steel plates
Bottom steel plane layer
Scintillator plane Top steel plane layer
o
Orientations alternate 90
in successive planes
March 2005
A. Weber
MINOS Experiment
18
Far Detector
• In old iron mine
• Was already there
– Soudan 1 & 2
• Right distance from FNAL
March 2005
A. Weber
MINOS Experiment
19
MINOS Scintillator Module
8m
Optical Connector
Connection to
electronics
Connection to
electronics
Optical Connector
Optical Connector
Multiplex
Box
Optical Connector
Multiplex
Box
Clear Fiber Ribbon Cable (2-6 m)
WLS Fibers
WLS Fibers
Scintillator Module
• 4-8m
scintillator
modules
• 24-28 strips
• double sided
readout
• multi anode
PMTs (16/64)
PMTs
March 2005
A. Weber
MINOS Experiment
20
PMT
• Light is detected by
multi-anode PMTs
– 230x
– 1500x
64-pixel in ND
16-pixel in FD
• pixel to pixel variations
March 2005
A. Weber
MINOS Experiment
21
FD Front End Electronics
• MINOS developed an ASIC chip for PMT readout
–
–
–
–
–
32 channels
shaping
amplification
sample & hold
output driver to ADC
• Excellent product
–
–
–
–
fast shaping 500 nsec
noise < 2 fC
linear> 20 pC
6 ASICs multiplexed
onto 1 ADC
March 2005
A. Weber
MINOS Experiment
22
Signal Amplification
March 2005
A. Weber
MINOS Experiment
23
Output of Pre-amplifier
March 2005
A. Weber
MINOS Experiment
24
Signal Digitisation
March 2005
A. Weber
MINOS Experiment
25
DAQ System
• Trigger-less DAQ system
–
–
–
–
PMTs
• Timing System
ASIC close to PMT
– Absolute time from GPS
(tabs= 200 nsec)
ADC in VME crate
– optical distribute along
fast PVIC-bus to PC trigger farm
large detector (trel= 4 nsec)
search for hits correlated in space and time
2 1 0
2 1 0
HV
VFB
2 1 0
HV
VFB
VFB
VARC
2
VARC
1
VARC
0
VARC
1
VARC
2
VME Readout Crates
ROP
serial
PVIC
Ether.
HV
VFB
2.5 MB/s
DAQ
LAN
ROP
serial
PVIC
Ether.
TRC
3
2
1
0
Optical PVIC Bus
RC
B B B B
R R R R
P P P P
Timestamp Clock
1 sec GPS ticks
antenna
GPS
Timing
Central
unit
Timing
PC
Timing System
March 2005
A. Weber
DAQ
LAN
0
3
15
VARC
0
VME
VME
TRC
2 1 0
HV
Front End Electronics
DAQ
LAN
40 Mbytes/s
PVIC Bus
DAQ
LAN
DAQ
LAN
DCP
To Persistent Store
To Dispatcher
Branch
Readout
Processors
TP
TP
TP
N
1
0
Trigger
Processors
10-100 Kbytes/s
MINOS Experiment
26
Near Detector Event
Low-energy track from
fiducial region
MINOS Preliminary
Etrack approx. 1.5 GeV
March 2005
A. Weber
MINOS Experiment
27
Additional Near Detector Events
Medium energy track
from near peak in
“pseudo-medium” beam
MINOS Preliminary
Etrack approx. 3.1 GeV
March 2005
A. Weber
MINOS Experiment
28
Additional Near Detector Events
One “snarl” (beam pulse)
in near detector, showing
multiple events.
MINOS Preliminary
March 2005
A. Weber
MINOS Experiment
29