Transcript Slide 1

Solar cell physics
Photovoltaic effect and cell
principles
Vítezslav Benda
Dept. of Electrotechnology, Czech Technical University in Prague
Technická 2, 166 27 Praha 6, Czech Republic, e-mail: [email protected]
1. Light absorption in materials and excess carrier generation
Photon energy h = hc/ (h is the Planck constant)
photon momentum  0
Light is absorbed in the material.
(x) is the light intensity
d    dx
 = () is the absorption coefficient
Absorption is due to interactions with material particles (electrons and nucleus).
If particle energy before interaction was W1, after photon absorption is W1+ h
• interactions with the lattice – low energy photons, results in an
increase of temperature
• interactions with free electrons - important when the carrier
concentration is high, results also in temperature increase
• interactions with bonded electrons- the incident light may generate
some excess carriers (electron/hole pairs)
Light intensity decreases with the
distance x form the surface
 x 
( x)   0 exp(x)   0 exp  
 xL 
Φ0 = Φin (1 – R)
R is the surface reflexivity
xL 
1

x=xL
is the so-called absorption length
Φ(xL) = 0.38 Φ0
xL

0
0
 ( x)d x  0.68 ( x)dx
Photovoltaic Quantum generator
This process can be realised in different materials
Semiconductors
W 
n0  N c exp F 
 kT 
Before interaction with photon
(in thermodynamic equilibrium)
  Wg
n0 p0  ni  BT exp
 kT
2
photon
Si
3

  Wg
  N c N v exp

 kT



bonded electron
Si
Si
free electron
Si
Si
Si
hole
After interaction with photons h > Wg
Si
Si
Si
n = n0 + Δn ,
p = p0 + Δp np > ni2
Δn, Δp
excess carrier concentration
(no thermodynamic equilibrium)
(Δn = Δp, because electron-hole pairs are generated )
W
W
Excess carrier
generation h  Wg
W2
Wc
Wg
Wv
1 h
thermalisation
Wc
bandgap
Wg
Wv
valence
band
Wc
Wg
W1
k
conduction
band
1
h
2
Wv
k
crystalline
W
Silicon
1
Wc
Wg
h
2
Wv
k
amorphous
h (eV)
 (nm)
Carrier generation with respect to
solar spectrum
 dn 
G(; x)  
   ( ) ( )(; x) 
dt

 gen
  ( ) ( ) 0 ( ) exp  ( ) x 
Total generation


0
0
Gtot ( x)   G(; x)d    ( ) ( )(; x)d
Efficiency of excess carrier generation by solar
energy depens on the semiconductor band gap
Suitable materials
Silicon
GaAs
CuInSe2
amorphous SiGe
CdTe/CdS
Carrier recombination
n
 dn 




dt


 rec
τ is carrier lifetime
r 
irradiative recombination
A 
Auger recombination
1
C An N D2
1
t 
Ct N t
recombination via loca1 centres
Resulting carrier lifetime
1


1
r

1
Cr N
1
A

1
t
Excess carrier concentration
Diffusion current is connected with carrier concentration gradient
J ndif  qD n
dn
dx
Dn = kTμn/q
J pdif  qD p
dp
dx
Dp = kTμp/q
Continuity equations
p
p 1 d
 Gp 

Jp
t
 p q dx
n
n 1 d
 Gn 

Jn
t
 n q dx
usually τn = τp = τ
In the dynamic equilibrium
n
0
t
d 2 p p G ( ; x)
 2 
2
Dp
dx
Lp
d 2 n n G(; x)
 2
2
Dn
dx
Ln
Ln  Dn
electron diffusion length
Lp 
D p
hole diffusion length
Excess carrier concentration can be found solving continuity equations
under proper boundary conditions
Electrical neutrality is in homogeneous
semiconductor n  p  no potencial difference
To separate excess carrier generated, an
inhomogeneity with a strong internal electric field
must be created
WFn
W
WFp
Photovoltaic effect and basic solar cell parameters
Junction
To obtain a potential
difference that may be
used as a source of
electrical energy,
an inhomogeneous
structure with internal
electric field is necessary.
Suitable structures may
be:
• PN junction
• heterojunction (contact
of different materials).
p-type
Radiation
n-type
Wc
Wg
WF
Wv
Ln
SCL
Lp
Principles of solar cell function
In the illuminated area generated excess carriers diffuse towards the PN junction.
The density JFV is created by carriers collected by the junction space charge region
J PV ( )  J PVN ( )  J PVP ( )  J OPN ( )
xj
• in the N-type region
p
J PVN ( )  q  G ( )dx  q 
0
• in the P-type region
xj
J PVP ( )  q
H

x j d
• in the PN junction space charge region
G ( )dx  q
p
0
H

xj
dx  J sr (0)
n
n
d
dx  J sr ( H )
J OPN ( )  q
x j d j
 G( )dx
xj
Illuminated PN junction:
A
supperposition of photo-generated
current andPN junction (dark)
I-V characteristic
I
I
in dark
VOC
irradiation
V
V
IPV
illuminated
ISC
Solar cell I-V chacteristic and its
importan points
Vmp
VOC
Modelling I-V characteristics of a solar cell
  qV j
J  J 01 exp
  kT
PN junction I-V characteristics
D 1
Dp 1 

J 01  ni2 q n

L p

L
n
p
n0 
 n p0
J 02 
Rs

 qVj  
 
  1
  1  J 02 exp
 2kT  

 
qni d
 sc
Parallel resistance Rp
I
Series resistance RS
Aill – illuminated cell area
IPV
D
Rp
V
RL
A - total cell area
Output cell voltage V = Vj- RsI
  V  Rs I  
  V  Rs I   V  Rs I
I  Aill J PV  I 01 exp q

1

I
  02 exp q
  1 
kT  
2kT  
Rp
 
 
Influence of parasitic resistances (Rs and Rp)
I SC  Aill J PV
If Rp is high
If
  Rs I SC  
  Rs I SC   Rs I SC
 I 01 exp q
  1  I 02 exp q
  1 
kT
2
kT
Rp
 
 
 
 
V0 C
2
2kT   I 02  I 02  4 I 01 ( I 02  I 01  Aill J PV ) 

ln


q
2 I 01


VOC 
Aill J PV  I PV  I 01  I 02
V
kT I PV
ln
q
I 01
V
Influence of temperature
VOC
(A)
kT I PV

ln
q
I 01
  Wg
 kT
I01 ~ ni 2  BT 3 exp

Consequently
I



VOC
0
T
For silicon cells the decrease
of VOC is about 0.4%/K
Rs increases with increasing temperature
V(mV)
Pm
(W)
Rp decreases with increasing temperature
Both fill factor and efficiency decrease
FF

with temperature
0
0
T
T
At silicon cells
1 
 0.5% K-1
 T
temperature (°C)
Organic semiconductors
orbitales 
orbitales 
(a)
S
S
S
S
S
S
BC
S
S
S
BV
(b)
BC
S
S
S
S
+
S
S
S
S
S
BV
Hoping mechanism :
A1- + A2 -> A1 + e- + A2 -> A1 + A2-
P & N materials and cells
N
N
N
N
Cu
N
N
O
N
N
O
N
N
N
N
Perylen pigment (n)
Cu Phtalocyanin (p)
h
V
-
Technological advantages of OSCs :
• Wet processing (Ink pad printing)
• Soft cells
• Large surfaces
• Low cost
• Molecular materials
+
+
+
+
+
Reflecting Electrode (Al)
P type organic semiconductor
N type organic semiconductor
Transparent Conducting Oxyde
Transparent Substrate
Photochemical cells
glass
TCO coating
Pt
electrolyte
dye on TiO2
nanocrystals
TCO coating
glass
light
Iodine/iodide redox
system
3I-
I3- + 2e-
To maximise current density JPV
it is necessary
• maximise generation rate G
• minimise losses
losses
recombination
electrical
• reflection
• emitter region
• series resistance
• shadowing
• base region
• parallel resistance
•not absorbed
radiation
• surface
optical