Transcript Slide 1
LANGMUIR PROBES IN THE INTENSE RF ENVIRONMENT INSIDE A HELICON DISCHARGE Francis F. Chen, UCLA Gaseous Electronics Conference, Austin TX, Tuesday, October 23, 2012 UCLA The permanent-magnet helicon source LANGMUIR PROBE The discharge tube is 5 cm in diam and 5 cm high PERMANENT MAGNET HEIGHT ADJUSTMENT GAS FEED COMPENSATION ELECTRODE UCLA The Langmuir probe VERTICAL PROBE 110126 SW = spot weld, SJ = slip joint, SS = soft solder, SG = superglue SW C SJ 0.64 L1 L2 SG ss SG 22 cm Compensation Electrode (CE) UCLA Distortion caused by RF pickup 0.00010 0.12 Negative current Negative current 0.10 0.08 0.06 0.04 0.00005 0.00000 -0.00005 0.02 -0.00010 0.00 -20 0 20 40 60 80 Probe voltage Electron current is greatly distorted. This is new: residence time at cos(wt) ~ 0 is taken into account. -100 -80 -60 -40 -20 0 20 Probe voltage Saturation ion current is not affected. UCLA The simple Langmuir formula is valid! 1/2 2 eV p Ii Ap ne M Ii2 V p , I e nevthe e (V p Vs )/ KTe 10 0.60 Ii squared Ii squared (OML) 0.50 Ie Ie(fit) Ie (0) 1 Ie (mA) 0.30 2 I (mA) 2 0.40 0.1 0.20 0.01 0.10 0.00 -100 0.001 -80 -60 V -40 -20 0 This gives n without knowing Te -4 -2 0 2 V 4 6 8 10 This gives Te and VS after subtracting ion current fit UCLA The art of ion subtraction 1000 160 Ii squared Ii squared (OML) 140 100 Ie (mA) 80 2 I (mA) 2 120 100 Ie Ie(fit) Ie (raw) 10 60 1 40 20 0.1 0 -100 -80 -60 V -40 -20 -10 0 180 -5 0 5 10 15 20 5 10 15 20 Vp 1000 Ie Ie(fit) Ie (raw) Ii squared Ii squared (OML) 160 140 100 Ie (mA) 2 I (mA) 2 120 100 80 10 60 1 40 20 0.1 0 -100 -80 -60 V -40 -20 0 -10 -5 0 Vp Electron distribution functions cannot be trusted. UCLA RF amplitude inside discharge 15 mTorr, 280G Volts peak-to-peak 50 40 30 20 With top plate 10 Probe at antenna Probe at center Probe at top 0 0 200 400 600 800 RF power (W) 1000 1200 UCLA False Te’s without Compensation Electrode 50 100 Ii squared Ii(OML) 10 I (mA) 30 1 2 I (mA) 2 40 Ie Ie(fit) Ie (0) T1 = 8.22 eV 20 0.1 10 0.01 0 -100 -80 -60 V -40 -20 0 100 -15 -10 -5 0 5 10 15 20 V 100 Ie Ie(fit) Ie (0) Ie Ie(fit) Ie (0) 10 I (mA) 10 I (mA) -20 20 1 1 T2 = 4.65 eV T3 = 2.97 eV 0.1 0.1 0.01 0.01 -20 -15 -10 -5 0 V 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20 V UCLA Importance of a large C.E. 100 100 1 27.12 MHz 400W 15 mTorr 0.1 File 110531_15 Ie Ie(fit) Ie (0) 10 I (mA) 10 I (mA) File 110531_24 Ie Ie(fit) Ie (0) 1 27.12 MHz 400W 15 mTorr 0.1 Te=8.17 eV Te=3.57 eV Vs=44.9 V Vs=33.1 V 0.01 0.01 -5 0 5 10 15 V 20 25 30 35 -5 0 5 10 15 20 25 30 35 V UCLA Sample data 60 16 n11 KTe -3 40 3.0 11 30 2.5 20 2.0 n (10 8 4 10 0 3.5 1.5 13.56 MHz, 400W 0 0 2 4 6 8 10 z (cm) Density scan along axis 12 KTe (eV) cm ) 50 12 n11 4.0 400W, 13.56 MHz, 15 mTorr 1.0 0 20 40 60 p (mTorr) 80 100 Pressure scan of n and Te UCLA Density saturation inside discharge 25 9 13.56 MHz, 15 mTorr -3 cm ) 7 -3 cm ) 20 11 15 n (10 11 n (10 Port 2 8 10 13 MHz 6 5 4 27 MHz 3 2 5 1 0 0 0 200 400 600 Prf (W) 800 1000 1200 Power scan at center of discharge 0 200 400 600 Prf (W) 800 1000 1200 Power scan 17 cm below discharge UCLA Electron emission at high Vp 60 20 50 0 18 40 n11 50 0 20 n11 50 0 16 50 SA = 25 30 14 20 12 10 10 0 0 20 Vmax 40 60 0 80 20 Vmax 40 60 80 Same data, w. Vmax=70 point +100V Emission adds to ion current in subsequent pulses -100V 25 msec/div Hiden ESPion Scan Average SA = 4 here UCLA Conclusions • Probes can be used even under the antenna • The compensation electrode has to be large enough • Spuriously high KTe otherwise • KTe is Maxwellian if ion current is subtracted right • Non-Maxwellian EEDFs cannot be trusted • Fast sweeps are needed to avoid electron emission UCLA Title here UCLA