Transcript Slide 1

ANALYSIS AND VISUALIZATION
OF TIME-VARYING DATA
USING ‘ACTIVITY MODELING’
By
Salil R. Akerkar
Advisor
Dr Bernard P. Zeigler
ACIMS LAB (University of Arizona)
Presentation Outline









Introduction
Activity – A DEVS Concept
Activity Modeler System
Stage1 - Preprocessing
Stage2 - Activity Engine
Stage3 - Visualization
Results
Implications for Discrete Event Simulation
Future Work
Introduction




Data Source and Problem under study
Current trends
Unexplored area
Motivation – Discrete Events vs. Discrete Time
Activity – A DEVS Concept

Definition of Activity
mn
m1
mi
q
t
t
1
i
0
T
Activity (T )   | mi 1  mi |
AvgActivity (T )  Activity / T
NumberOfThresholdCross (T , q)  Activity(T ) / q
Activity – A DEVS Concept


Coherency (Space and Time)
Instantaneous Activity
Instantaneous Activity(IA(t))  Value(t ) Value(t 1)

Accumulated Activity (same as DEVS Activity)
t
Accum ulatedActivity( AA(t ))   Value(t )  Value(t  1)
i

Activity Domain
Activity Modeler System
Stage-1
Stage-2
Stage-3
Raw
Data
RESULT
S
GNUPLOT
MODULES
PERL
FORMATTER
RESULT
S
ACTIVITY
ENGINE
ACTIVITY
DATA
AVSEXPRESS
MODULES
FORMATTED
DATA
GNUPLOT
MODULES
(OPTIONAL)
PERL
FORMATTER
Stage 1 – Pre Processing



Why do we need pre-processing?
Regular Structure format
PERL formatter

Functions





Extract Information
Format
Correction Logic
Analyze part of information
2D formatter
 decrease IO operations
 standardization
Stage 2 – Activity Engine
DATA-FILE
THE ACTIVITY ENGINE
PATTERN
INFORMATION
-------------------
ACTIVITY
GENERATOR
PATTERN
PREDICTOR
-------------------
GNUPLOT
SCRIPTS
PERL
Formatter
DATA
ENGINE
STATISTIC
ANALYZER
------------------------------------STATISTICAL
INFORMATION
-------------------
ACTIVITY
TIMESERVICES
AVS-EXPRESS
MODULES
ACTIVITY
LOG
ACTIVITY
DATA
Stage 2 – Data Engine

Functions
 File


handling
Sequential / Random access
Standardization of filenames for automation
 Memory Allocation
 Transformation

Cellular and Temporal
 Transformation

between domains
between dimensions
Val2D[i][j] = Val1D[i*Cols+j]
 Independent
of spatial dimension
Stage 2 - Activity Generator




Instantaneous Activity
Accumulated Activity
Time Advances
Activity Factor (AF)
nTim eSteps( IA(t )  threshold)
t[0, T ]
TotalTim eSteps


Cellular domain
Threshold (AF)
Activity
factor
 IA( x, t )
t
x
NT
Cells 
Stage 2 – Statistic Analyzer

Extract Statistics in terms of groups




Group1: Maximum, Minimum, Range, Average
Group2: Standard deviation, Mean
Group3: Living Factor (Temporal domain)
Group4: Histogram of Time Advances

Static in nature

Provides meaningful threshold to

Activity Factor
 Living Factor
Stage 2 – Statistic Analyzer

Group 3: Living Factor (LF)

Temporal domain
nCells ( IA(t )  threshold )
t[0, T ]
TotalCells

Group 4: Histogram of Time
Advances

Temporal domain
 Logarithmic in scale
Maxtadv
Min(tadv)
 109
Time 
Stage 3 – Pattern Predictor




Spatial and Temporal Coherency
Peaks and Max
Analyze activity pattern
Predict activity pattern
Stage 3 – Pattern Predictor
•Max Locator
•Peak Locator
Difference in Peak and Max
•False Peak problem
•Eliminated by ROI
(Region of Imminence)
Stage 3 – Region Of Imminence (ROI)


Definition
Steps


Peak Detection in IA
Scanning algorithm




Boundary conditions
Threshold conditions ()
Significance
Imminence Factor
Cells 
Stage 3 – Pattern Predictor



1D scanning algorithm
2 neighbors
Binary visualization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Peak Under consideration: 2
Location of cell: 10
Initial Values:
Left-neighbor = right- neighbor = 10
Final Values:
Left-neighbor = 7
Right-neighbor = 13
Boundary
condition
Threshold
condition
Cells
Stage 3 – Sphere Of Imminence

2D scanning
algorithm

3 types of tuning



Coarse
Normal
Fine
Stage 3 – Sphere Of Imminence
Fine Tuning
Coarse Tuning
Normal Tuning
Type Of
Tuning
Computation
time (ms)
Imminence
Factor
(t= 5)
Imminence
Factor
(t=10)
Coarse
5393
0.0709
0.0974
Normal
6224
0.0985
0.1395
Fine
6456
0.1505
0.3327
Stage 3 – Region Of Imminence
Valcell  Valcell  1 & &Valcell  Valcell  1
Valcell  Valcell  1 & &Valcell  Valcell  1
(Valcell  Valcell  1) & &(Valcell  Valcell  1)
Valcell  Valcell  1 & &Valcell  Valcell  1
ROI: Overcome the False Peak problem
Stage 3 – Predict Pattern





1D space
Linear Span Module
 [0.9 – 0.95]
Order of Pattern
Pattern attributes
ROI
1
1
1
0
1
0
0
0
t = ta
0
0
1
1
0
1
0
0
t = tb

Offset
 Direction
 Difference

Steps



3
Recognizing pattern t[n,n+1]

2nd Order 1st
1st
5
order pattern
2 2nd order
Predicting pattern t[n+2,T]
0
0
0
0
0
1
0
0
0
t = ta
2
0
0
1
0
0
t = tb
Linear span
Stage 3 - Visualization

Softwares



GNUPLOT
AVS-Express
Reader
Visualization Stages



Reader (Import data)
Visualization modules
Writing stage
VIZ modules
Writer
Stage 3 - Visualization



Zero Padding
Binary Visualization
Advantages



Eliminating unwanted data
Reduction in file size
Implementation

set zrange [0.5:]
Stage 3 - Visualization
Domain
Types Of Result
Visualization Techniques
1D
2D
Instantaneous Activity,
Accumulated Activity, Time
Advances
Surface Plot Images
(GNUPLOT)
Surface Plot / Contour
movies (GNUPLOT
scripts/ AVS-Express)
Region Of Imminence,
Peak Locator, Max Locator
Binary Visualization,
Zero Padding
(GNUPLOT)
Binary Visualization,
Zero Padding
(GNUPLOT scripts)
Cellular
Statistics, Activity Factor
1D single / multi graphs
(GNUPLOT)
Surface Plot Images
(GNUPLOT)
Temporal
Living Factor, Histogram of
time advances
1D single / multi graphs
(GNUPLOT)
Surface Plot Images
(GNUPLOT)
Spatio-Temporal
Results

1D space
 1D
heat diffusion process
 Robot Activity

2D space
 2D
heat diffusion process
 Fire-Front model
Results – 1D Heat diffusion
• 1D space ,T=100
• N=10, 100, 200
N
100
10
200
Results – Robot Activity




1D space
Robots modeled as cells
Simulation time steps – 2357
Data (Value domain)

1- Robot moving
 0- Robot stopped

Activity domain

1- State transition
 0- Same state
Results – Robot Activity



Living Factor
Activity Factor
Imminent groups
Results – 2D diffusion
Histogram of Time Advances




2D space
(100 x 100 cells)
T = 50
Cellular domain results (2D)

Activity Factor
 Statistics
 Surface plot images

IA surface characterized by

concentric circles
 tadv histogram lower end
Activity Factor
Results – 2D diffusion
Movie of IA / AA (activity domain) and output values (value domain)
Results – Fire Front model



2D space
(100 x 100 cells)
T = 297
Movie for Value domain
Results – Fire Front model

Living Factor

20% maximum
 t=180 boundary

Imminence Factor
 = 0.7
 t [50-150]

Time
Results – Fire Front model
Instantaneous Activity
Peak Bars
Accumulated Activity
Region Of Imminence
Implications for Discrete Event Simulation

DEVS transitions:

DTSS transitions:

Maximum Slope:

DEVS v/s DTSS
Implications for Discrete Event Simulation
MODEL
CELLS
TIME
MAX(IA)
TOTAL AA
DEVS
DTSS
1D diffusion
(N=10)
10
100
0.26318
2.4283
0.0093
1D diffusion
(N=100)
100
100
0.9069
3.8296
0.00042
1D diffusion
(N=200)
200
100
0.9635
3.9285
0.0002
2D diffusion
10000
50
0.2583
2048.77
0.819
Fire Front
10000
297
213.995
5321979
0.0083
DEVS v/s DTSS
Results – Predict Pattern
Test data - 3
1D diffusion (N=100)
Results

Results for 1D process



Test data
1D diffusion
Percentage Error
decreases as


N increases
ROI characterized by
linear curves
Conclusion






New perspective for data analysis – Activity domain
ROI – Spatial Coherency in Temporal domain
Analyze process behavior in terms of Activity
Compute and Predict – activity pattern
Results – process specific
Predict Pattern - % Error decreases as

N increases
 ROI curves are characterized by linear curves

DEVS found to be more efficient than DTSS
Future Work

Extending system to data in 3D space

Extending system to UNIX platform

Enhancing the Pattern predictor module

Efficiently Detecting the ‘new Imminent Cells’ in DEVS simulation
ACKNOWLEDGEMENTS







Dr. Bernard Zeigler
Dr. Salim Hariri
Dr. James Nutaro
Dr. Xiaolin Hu, Alex Muzy
Hans-Berhard Broeker
Cristina Siegerist
ACIMS LAB
QUESTIONS ?