Transcript Document
Introduction to Micromagnetic Simulation Feng Xie Ph.D. student Major advisor: Dr. Richard B. Wells Contents Introduction to magnetic materials. Ideas in micromagnetics. Physical equations. Field analysis. ODE solver and coordinate selection. Simulations for ideal cases. Thermal effects Summary Magnetization M S +p l -p N Magnetic dipole moment m pl Magnetization (magnetic dipole moment per unit volume) M m V Magnetic Materials Diamagnetic: M H Most elements in the periodic table, including copper, silver, and gold. Paramagnetic: M Include magnesium, molybdenum, lithium, and tantalum. M Ferromagnetic: Iron, nickel, and cobalt. Ferrimagnetic: Ferrites. CGS and SI Units Quantity Symbol CGS unit SI unit CGS value / SI value M emu/cc A•m-1 10-3 H Oe A-turn•m-1 410-3 Anisotropy constant K ergs/cc J•m-3 10 Magnetic charge density m unit pole/cm3 Wb•m-3 100/(4) Permeability of vacuum 0 =1 H•m-1 107/(4) Magnetization Magnetic field Hysteresis Loop Scale Comparison A magnetic force microscopy (MFM) image showing Domain structure Micromagnetic explanation of Domain structure (Phenomenology) Electron Spins (Quantum theory) Why Micromagnetics? To provide magnetization pattern inside the material. To explain some experimental results. To simulate new materials. To realize new properties of materials. To provide material parameters to designers. Micromagnetic Assumptions Magnitude: M M s H M The Landau-Lifshitz-Gilbert (LLG) equation Magnetic fields: – Externally applied field – Exchange field – Demagnetizing field – Anisotropy field – Stochastic field or the stochastic LLG equation Physical Equations The Landau-Lifshitz (LL) equation: dM L M H M M H 2 dt 4M s The Landau-Lifshitz-Gilbert (LLG) equation: dM dM G M H M dt Ms dt where 4 L M s G L 1 2 Comments on Equations When <<1, LG=22.8 M (radHz/Oe). From either the LL or the LLG equation: In analysis, we prefer the form: L dM L M H M M H dt Ms dMs2 0 dt Field Analysis • Applied field: DC + AC. • Demagnetizing field: time consuming. • Effective field: E H eff M H eff , x E E E , H eff , y , H eff , z M x M y M z – Anisotropy field: uniaxial and cubic. – Exchange field: quantum mechanic effect. – Other fields. DC Field Solution DC field only + single grain The solution is H0 0 M y 0 x sin cos L H 0 t 0 M M s sin sin L H 0 t 0 cos where tan 2 tan 0 2 exp L H 0 t DC Field Simulations Small Applied AC Field • Small ac field + single grain Hx = h cos(t) Hy = h sin(t) h << H0 H0 M y x resonance Demagnetizing Field long distance i 1 H dem Vi where N vi j 1 S j nS j M r r r 2 3 N d r d r Dij M j 3 r r j 1 1 Dij Tdxdydz v vi T r Sj r r nˆ d 2 r 3 r r • Consuming most of computation time. Fast Algorithm Two computational methods are in discussion: Fast Multipole Method (FMM) and Fast Fourier Transform (FFT). FMM is good for very big sample size. It can be applied on either asymmetric or symmetric geometries. FFT is good for small sample size. It can only applied on symmetric geometries. Fast Multipole Method Source Near Field Middle Field Far Field Fast Fourier Transform Fast Fourier Transform – Convolution N i H dem Dij M j j 1 – Symmetry in geometries v_b(row) v_a(row) 0, 3 0, 2 0, 1 0, 0 2, 1 2, 0 0, 3 3, 3 2, 3 3, 2 2, 2 1, 2 1, 1 1, 0 1, 3 0, 2 1, 3 0, 1 3, 1 0, 0 3, 0 u_a(column) 2, 1 1, 1 1, 0 3, 2 2, 2 1, 2 3, 3 2, 3 2, 0 3, 1 3, 0 u_b(column) Anisotropy Field Magnetocrystalline Anisotropy H M Uniaxial Anisotropy: Cubic anisotropy: E=K0u+K1usin2+K2usin4+ E=K0c+K1c(cos21cos22 +cos22cos23+ cos23cos21)+ Exchange Field It is mainly from electron spin coupling. It is short-range so that we take into consideration only exchange energy between nearest-neighbor grains. The effective exchange field is H x ,i 1 M s ,i jNN 2 Aij m j mi 2ij Adjustable Parameters Crystalline anisotropy HCP or FCC K1, K2, … distribution of c_axis (how good is good) Exchange constant A: Different materials have different As. Different parts may have different As (poly). Sample size and shape. Anisotropy . Nonuniform Ms Coordinates |m|=1 =? m m z m z z y m z z y y + x x y x z x z < 30 x x x < 30 ODE Solver • Runge Kutta embedded 4th-5th method [2]. i 1 g ni f t n ci hn , y n hn aij g nj j 1 i 1,, s t n1 t n hn s y q ,n 1 y n hn bq ,i g ni i 1 • Adaptive time step. • No need value of previous steps. [2] J. R. Cash and A. H. Karp, “A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides,” ACM Transactions on Mathemathical Software, vol. 16, no. 3, pp.201-222, September 1990. Geometry Top View Side View d Layer 2 a c-axis dz y Layer 1 x Default Simulation Parameters a d dz 0.5 1 0.1 1 0 heh hev -0.05 -0.05 Ms K1 (emu/cc) (ergs/cc) 233 5105 [0,20 ] [0 ,360 ] Various c-axis distributions Various exchange constants Various anisotropy constants Various thickness Mixture of two anisotropy constants Stochastic LLG Equation • Due to thermal fluctuation. • Stochastic Landau-Lifshitz-Gilbert equation L dM L M H M M H dt Ms L L M dh M M dh M s Where h is a stochastic field with the property E h t 0 2k BT E hi t h j t ij t s 2 ij t s M s v SDE Solver Stochastic LLG equation is a stochastic ODE with multidimensional Wiener process. The strong order of Runge-Kutta methods cannot exceeds 1.5 [3]. Heun scheme is applied. [3] K. Burrage and P.M. Burrage, “High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations,” Applied Numerical Mathematics 22 (1996) 81-101. Thermal effects Domain Wall Simulation (Side View) Domain wall Domain Domain Wall Simulation (Top View) Bloch wall Summary Basic ideas in micromagnetic simulation. Algorithms in micromagnetic modeling. Micromagnetic simulation results.