shock-wave - MOKSLINĖ ELEKTRONINĖ BIBLIOTEKA

Download Report

Transcript shock-wave - MOKSLINĖ ELEKTRONINĖ BIBLIOTEKA

Institute for High Energy Densities, Moscow, RAS
СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНОВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ
Хищенко К. В.*, Левашов П. Р., Ломоносов И. В.
Институт теплофизики экстремальных
состояний РАН, Москва, Россия
*[email protected]
Работа выполняется при финансовой
поддержке РФФИ, гранты
№ 97-07-90370
№ 01-07-90307
№ 04-07-90310
Будва, Черногория
13-20 мая 2006
VII Международная конференция «SCIENCE ONLINE:
электронные информационные ресурсы для науки и образования»
EXPERIMENTAL DATA
AVAILABLE AT HIGH ENERGY DENSITIES
H
P, GPa
1.0e+05
H - principal Hugoniot
HP - porous Hugoniots
S - release isentropes
IEX - isobaric expansion
HP
MELTING
CRYSTALL
S
1.0e+02
LIQ.
CP
PLASMA
IEX
1.0e-01
LM
LIQ.+GAS
GAS
1.0e-04
1.0e+00
V,
1.0e+01
1.0e+01
cм3/г
1.0e+03
1.0e+00
T, 1000 K
15
Pb impactor, Pb target
MULTIPHASE METASTABLE EOS
Phase distribution
s
s+l
l
g+l
g
s+g
6.6 km/s, impactor 15 mm in diameter, plate thickness - 6.35 mm
Поварницын М. Е., Хищенко К. В., Левашов П. Р. // Экстремальные состояния вещества.
Детонация. Ударные волны / Под ред. Михайлова А. Л. Саров: РФЯЦ–ВНИИЭФ, 2005. С. 577–582.
http://teos.ficp.ac.ru/rusbank/
URL:
http://www.ihed.ras.ru/rusbank/
• 6 types of experiments
• About 21000 registrations for more than 500 substances
• 4 types of shock-wave data approximations
• 3 types of caloric EOS
• Access via the Internet using common browsers
• Graphical representation of all data
• EOS calculations (shock Hugoniots, release isentropes,
isobars, isochors, cold curves etc.) with graphical
representation
• Modeling of typical shock-wave experiments
DATABASE CONTAINS EXPERIMENTAL DATA ON
 Shock compression of solid and porous samples
 Isentropic expansion
 Sound speed measurements behind shock front
 Isobaric expansion (exploding wires)
 Double shock Hugoniots
 Free surface velocity profiles at shock loading
SHOCK HUGONIOTS APPROXIMATIONS
 Altshuler L.V. et al. // J. Appl. Mech. Techn. Phys. 1981. V.22. P.145
 Kalitkin N.N., Kuz’mina L.V. // Mat. model. 1998. V.10. P.111
 Zhernokletov M.V. et al. Experimental data on shock compression and
adiabatic expansion of condensed substances at high energy densities,
Chernogolovka, 1996
 Trunin R.F. et al. Experimental data on shock-wave compression and
adiabatic expansion of condensed substances. Sarov: VNIIEF, 2001
EQUATIONS OF STATE
 Bushman A.V., Lomonosov I.V., Fortov V.E. Equation of state of metals at high
energy density. Chernogolovka: 1992
 Lomonosov I.V., Fortov V.E., Khishchenko K.V. // Chem. Physics. 1995. V.14. P.47
 Khishchenko K.V. Physics of Extreme States of Matter – 2004. Chernogolovka: 2004
SEARCH BY SUBSTANCE
EXPERIMENTAL POINTS: TABULAR AND
TEXTUAL REPRESENTATION
EXPERIMENTAL DATA EDITING
(for registered users)
SHOCK COMPRESSION OF NICKEL
1-13 – experimental data on shock
compression of nickel samples of
different initial densities
a3 – approximation of shock-wave
data
a4 – approximation of quantumstatistical calculations
e1 – calculation on semi-empirical
equation of state
ISENTROPIC EXPANSION OF COPPER
1, 2, 3, 6 – experimental data on
isentropic expansion of copper
samples with different initial
densities
e1 – calculation on semi-empirical
equation of state
QUARTZ DOUBLE
COMPRESSION
2, 4 – experimental data
e1 – equation of state calculation
FREE SURFACE VELOCITY
PROFILE
Free surface velocity profile
Sample: Mo, 0.416 mm thick
Striker: Al, 0.05 mm thick,
velocity 4100 км/с
EOS CALCULATIONS: THE LIST OF CURVES
TEFLON: EOS CALCULATIONS
Different curves calculated using semiempirical EOS for teflon. Graphical and
numerical representation of calculation results
Description of calculated curves and
experimental points for teflon
MODELING OF TYPICAL
SHOCK-WAVE EXPERIMENTS
• «Collision» and «Impedance matching» methods
• 3 types of experimental set-ups for each methods
• Riemann problem is solved with given accuracy using
shock Hugoniot approximations and EOSs
• User can choose materials of all substances participating
in the experiment, their initial density and EOSs
• Modeling results can be presented in graphical
(in pressure-particle velocity diagram) and textual form
• The interface allows one to estimate the influence of
EOS or shock Hugoniot approximation on the
interpretation of experimental data
«COLLISION» METHOD
Striker: aluminum, KEOS7 EOS, W = 5.6 km/s
Target: copper, D = 6.64 km/s
А1. Given are W, D, and striker shock Hugoniot. Determine pressure P and particle velocity U in shockcompressed striker and target, as well as density ρ and specific internal energy E of the target.
А2. Given are striker velocity W and shock Hugonots or EOSs of striker and target. Determine the shock wave
velocity D and parameters P, U, ρ, and E in the target.
А3. Given are shock wave velocity in the target D and shock Hugoniots or EOSs of striker and target. Determine
the target velocity W and parameters P, U, ρ, and E behind shock wave front in the target.
Experiment: Altshuler L.V., Kormer S.B., Bakanova A.A., Trunin R.F. // JETP. 1960. V.38. №3. P.790.
«IMPEDANCE MATCHING» METHOD
Striker: iron, KEOS7 EOS, D1 = 5.38 km/s
Target: copper, D2 = 5.36 km/s
B1. Given are shock wave velocities in the screen D1 and in the sample D2, as well as shock Hugoniot or EOS of
the screen. Determine parameters P, U, ρ, and E in the shock-compressed sample.
B2. Given are shock wave velocity in the screen D1, and shock Hugoniot or EOSs of screen and sample.
Determine shock wave velocity in the sample D2 and parameters P, U, ρ, and E behind the shock front.
B3. Given is the shock wave velocity in the sample D2. Determine the shock wave velocity in the screen D1 and
parameters P, U, ρ, and E of the sample behind the shock front.
Experiment: Altshuler L.V., Krupnikov K.K., Brazhnik M.I. // JETP. 1960. V.34. №4. P.886.
Столкновение кометы с Землей
density [g/cc]
1
10
10
-1.000
5
5
-0.5000
0
2
0.5000
1.000
0
H [km]
0
0.086
0.17
0.26
0.34
0.43
0.51
0.60
0.69
0.77
0.86
0.94
1.0
1.1
1.2
1.3
1.4
1.5
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.7
2.8
2.9
3.0
pressure [GPa]
0
1.500
2.000
2.500
3.000
-5
-5
3.500
4.000
4.500
5.000
5.500
-10
-10
6.000
6.500
7.000
7.500
-15
-15
3
8.000
8.500
9.000
-15
-10
-5
0
L [km]
20 km/s, impactor 1.8 km in diameter
5
10
15
Столкновение кометы с Землей
Density distribution
3.0
2.25
1.50
0.75
10-2
20 km/s, impactor 1.8 km in diameter
CONCLUSIONS AND FUTURE WORK
• Public database on shock-wave experiments and equations
of state has been creating:
- 6 types of experimental data, more than 20000 points
- graphical representation of all data
- 3 types of wide-range equations of state
- EOS calculation with graphical representation
- modeling of typical shock-wave experiments
• We plan to incorporate multiphase tabular equations of state
for metals into the database