O3, No Chemistry Test - Community Climate System Model

Download Report

Transcript O3, No Chemistry Test - Community Climate System Model

WACCM Chemistry Tutorial
Doug Kinnison
D. Marsh, S. Walters, G. Brasseur,
R. Garcia, R. Roble, many more…
[email protected]
303-497-1469
8 June 2007
Tutorial Outline…
Surface to 150 km (500 km)
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Summary / Future Development
Jarvis, “Bridging the Atmospheric Divide”
Science, 293, 2218, 2001
UCAR Quarterly –
winter 1999
First Interactive
results were show
in 2003.
UCAR Quarterly –
winter 1999
Whole Atmosphere Community Climate Model
(WACCM)
Model-OZone And Related chemical
Tracers
MOZART3 CTM
ACD, R. Garcia, PI
Community Atmospheric Model
CAM3
WACCM
CGD, B. Boville, PI
TIME-GCM
HAO, R. Roble, PI
Themosphere-IonosphereMesosphere-Electrodynamics
Processes
0-150 km; 2.0x2.5, 66L
50-110 species
Need to Represent
Chemical Processes at
relatively fine resolution
MLT; 3-5 km Res.
Stratosphere; 1-2 km Res.
UTLS; 1 km Res.
2.8 x 2.8
Courtesy of A. Gettelman
Cost of Adding Chemistry (1.9x2.5)…
Courtesy of Stacy Walters
Cost of Adding Chemistry…
WA3/CAM = 12
WA3/GHG = 3
Courtesy of Stacy Walters
Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
Input File
Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB, In Situ)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Summary / Future Development
Creates files specific
and necessary to the
chemical simulation.
BEGSIM
output_unit_number = 7
output_file
= ions.marsh.doc
procout_path
= ../output/
src_path
= ../bkend/
procfiles_path = ../procfiles/cam/
sim_dat_path
= ../output/
sim_dat_filename = ions.marsh.dat
Input File for Preprocessor
COMMENTS
"This is a waccm2 simulation with:"
"(1) The new advection routine Lin Rood"
"(2) WACCM dynamical inputs"
"(3) Strat, Meso, and Thermospheric mechanism"
End COMMENTS
SPECIES
Solution classes
Explicit
CH4, N2O, CO, H2, CH3CL, CH3BR, CFC11, CFC12, CFC113
HCFC22, CCL4, CH3CCL3, CF3BR, CF2CLBR, CO2
End explicit
Implicit
O3, O, O1D, O2, O2_1S, O2_1D
N, NO, NO2, OH, NO3, HNO3, HO2NO2, N2O5
CH3O2, CH3OOH, CH2O, H, HO2, H2O2, H2O
CL, CL2, CLO, OCLO, CL2O2, HCL, HOCL, CLONO2, BRCL
BR, BRO, HBR, HOBR, BRONO2, N2p, O2p, Np, Op, NOp, N2D, e
End implicit
End Solution classes
Solution
O3, O, O1D -> O, O2, O2_1S -> O2, O2_1D -> O2
N2O, N, NO, NO2, NO3, HNO3, HO2NO2, N2O5
CH4, CH3O2, CH3OOH, CH2O, CO
H2, H, OH, HO2, H2O2
CL -> Cl, CL2 -> Cl2, CLO -> ClO, OCLO -> OClO, CL2O2 -> Cl2O2
HCL -> HCl, HOCL -> HOCl, CLONO2 -> ClONO2, BRCL -> BrCl
BR -> Br, BRO -> BrO, HBR -> HBr, HOBR -> HOBr, BRONO2 -> BrONO2
CH3CL -> CH3Cl, CH3BR -> CH3Br, CFC11 -> CFCl3, CFC12 -> CF2Cl2
CFC113 -> CCl2FCClF2, HCFC22 -> CHF2Cl, CCL4 -> CCl4, CH3CCL3 -> CH3CCl3
CF3BR -> CF3Br, CF2CLBR -> CF2ClBr, CO2, N2p -> N2, O2p -> O2
Np -> N, Op -> O, NOp -> NO, e, N2D -> N, H2O
End Solution
Fixed
M, N2
End Fixed
Input File for Preprocessor
Photolysis
[jo2_a] O2 + hv -> O + O1D
[jo2_b] O2 + hv -> 2*O
[jo3_a] O3 + hv -> O1D + O2_1D
[jo3_b] O3 + hv -> O + O2
[jn2o] N2O + hv -> O1D + N2
[jno] NO + hv -> N + O
[jno_i] NO + hv -> NOp + e
[jno2] NO2 + hv -> NO + O
[jn2o5_a] N2O5 + hv -> NO2 + NO3
[jn2o5_b] N2O5 + hv -> NO + O + NO3
.
.
* -------------------------------------------------------------* Sulfate aerosol reactions
* -------------------------------------------------------------[het1] N2O5 -> 2*HNO3
[het2] CLONO2 -> HOCL + HNO3
[het3] BRONO2 -> HOBR + HNO3
[het4] CLONO2 + HCL -> CL2 + HNO3
[het5] HOCL + HCL -> CL2 + H2O
[het6] HOBR + HCL -> BRCL + H2O
Reactions…
[cph25,cph] N2D + O2 -> NO + O1D
[cph26,cph] N2D + O -> N + O
.
NO + O + M -> NO2 + M
NO2 + O + M -> NO3 + M
NO2 + O3 -> NO3 + O2
[usr3] NO2 + NO3 + M -> N2O5 + M
[usr3a] N2O5 + M -> NO2 + NO3 + M
; 5.e-12
; 4.5e-13
; 9.0e-32, 1.5, 3.0e-11, 0., 0.6
; 2.5e-31, 1.8, 2.2e-11, .7, 0.6
; 1.2e-13, -2450
; 2.e-30, 4.4, 1.4e-12, .7, .6
bimolecular reactions: Arrhenius Expression
Termolecular reactions: Troe Expression
Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB, In Situ)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Summary / Future Development
Numerical Approach
• System of time-dependent Ordinary Differential Eq.
dy
 f t, y  Pt, y  L(t, y)y
dt
yi t  fi {y1,y2 ,....yN } i  1 i  N
- This system is solved via two Algorithms
(1) Long-lived: Explicit Forward Euler method (e.g., N2O)
y
n1

n

 y  t  f tn ,y
n

t = tn+1 - tn
where t = 30 minutes
Sandu et al, J. Comp. Phys., 129, 101-110, 1996.
Numerical Approach Cont…
(2) Short-lived: Implicit Backward Euler method (e.g. OH, O3)
n1
n
n1
n1
 y  t  f t ,y
y

- The algebraic system for method (2) is quadradically non-linear.
- This system can be written as:
Gy
n1
 y
n1
 y  t  f tn1 ,y
n
n1
 0
(2.1)
- Here G is a Ni valued, non-linear vector function, where Ni = # species
- Eq. 2.1 is solved via a Newton-Raphson iteration, or…
n1
(m1)
y
 y
n1
(m)
1
 J  G( y
n1
(m)
) Jij  Gi /y j
(2.2)
- The iteration and solution of Eq. 2.2 is carried out with a sparse matrix solver
- This process is terminated when the given solution variable change in relative
terms is less than a prescribed value (typically 0.001).
- If the iteration max is reached (10) before reaching this criterion, the timestep
is cut in half and Eq. 2.2 is iterated again. The timestep can be reduced 5
times before a result is returned (good or bad).

Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Future Development
Model Chemistry - 55 Species Mechanism
Long-lived Species:
Misc:
CFCs:
HCFCs:
Chlorocarbons:
Bromocarbons:
Halons:
Constant Species:
(19-species) - Explicit Forward Euler
CO2, CO, CH4, H2O, N2O, H2, O2
CCl4, CFC-11, CFC-12, CFC-113
HCFC-22
CH3Cl, CH3CCl3,
CH3Br
H-1211, H-1301
M, N2
Radiatively Active
Short-lived Species:
OX:
NOX:
ClOX:
BrOX:
HOX:
HC Species:
Ions:
(36-species) - Implicit Backward Euler*
O3, O, O(1D)
N, N (2D), NO, NO2, NO3, N2O5, HNO3, HO2NO2
Cl, ClO, Cl2O2, OClO, HOCl, HCl, ClONO2, Cl2
Br, BrO, HOBr, HBr, BrCl, BrONO2
H, OH, HO2, H2O2
CH2O, CH3O2, CH3OOH
N+, N2+, NO+, O+, O2+
* Non-linear system of equations are solved using a Newton Raphson iteration technique;
uses sparse matrix techniques; Sandu et al, J. Comp. Phys., 129, 101-110, 1996.
Model Chemistry - 106 Species Mechanism
(219 Thermal; 18 Het.; 71 photolytic)
Additional Surface Source Gases (13 additional) …
NHMCs:
CH3OH,
C2H6, C2H4, C2H5OH, CH3C HO
C3H8, C3H6, CH3COCH3 (Acetone)
C4H8 (BIGENE), C4H8O (MEK)
C5H8 (Isoprene), C5H12 (BIGALK)
C7H8 (Toluene)
C10H16 (Terpenes)
Radicals:
Includes:
Approx. 45 additional species.
Detailed 3D (lat/lon/time) emission inventories of
natural and anthropogenic surface sources
Dry and wet deposition of soluble species
Lightning and Aircraft production of NOx
Kinnison et al., accepted, J. Geophys. Res., 2007.
Comparison of Mechanisms (106 - 50 / 50)
Ozone change in tropics
RO2 + NO -> RO + NO2
Stratosphere
NO2 + hv -> NO + O
O + O2 + M -> O3 + M
Troposphere
Comparison of Mechanisms (106 - 50 / 50)
CO change in tropics
Stratosphere
Troposphere
Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB, In Situ)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Summary / Future Development
Lower Boundary Conditions…
Total Organic Chlorine
CH4, 30N
CO2, 30N
Surface CO (from emission BC)
In Situ Forcings
Surface NO (from emission BC)
Lightning NOx
- Production: Price et al., 1997
- Distribution: Pickering, 1998
Other In situ Forcings…
• Subsonic Aircraft NOx and CO is
also included. Friedl et al., 1997.
• Auroral NOx (based on TIMEGCM)
• SPE’s (Jackman/Marsh)
Upper Boundary Conditions…
• For most constituents in WACCM the UB is zero flux.
• O, O2, H, and N mixing ratios are set using MSIS (Mass
Spectrometer-Incoherent Scatter) model.
• CO, CO2 are taken from the TIME-GCM (Roble and
Ridley, 1994)
• NO is taken from observations using the Student Nitric
Oxide Explorer satellite (SNOE; Barth et al., 2003),
which has been parameterized as a function of latitude,
season, phase of solar cycle in Marsh et al, 2004 Nitric Oxide Empirical Model (NOEM).
Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Future Development
Heterogeneous Chemistry
Reactions on three aerosol types (Sulfate, NAT, Water-ICE):
N2O5 + H2O => 2HNO3
ClONO2 + H2O => HOCl + HNO3
ClONO2 + HCl => Cl2 + H2O
HOCl + HCl => Cl2 + H2O
HOBr + HCl => BrCl + H2O
BrONO2 + H2O => HOBr + HNO3
Rate Constants Approach:
K = 1/4 V * SAD *

V = mean speed (kinetic theory of gases)
 = reaction probability (# gas molecules absorbed / # gas collisions at surface)
SAD = aerosol surface area density (cm2 aerosol / cm3 atmosphere)
Units = (cm/sec) * (cm2/cm3) = sec-1
d[N2O5] / dt = -k [N2O5]
Reaction Uptake Coefficient on Sulfate Aerosol
(JPL-02, Sander et al.)
f (T, P, H2SO4 wt%, [H2O], [HCl], [HOCl], radius)
Sulfate Aerosol
Reaction Probability
Equations: JPL02
Reaction Uptake Coefficient on NAT, ICE
Aerosol (JPL-02, Sander et al.)
Reaction
NAT
Water-Ice
N2O5 + H2O => 2 HNO3
0.0004
0.02
ClONO2 + H2O => HNO3 + HOCl
0.004
0.3
ClONO2 + HCl => HNO3 + Cl2
0.2
0.3
HOCl + HCl => H2O + Cl2
0.1
0.2
BrONO2 + H2O => HNO3 + HOBr
0.3
0.3
-
0.3
HOBr + HCl => BrCl + H2O
SAGEII, Lidar Data Time-series @47.5 N
Taken from WMO, Scientific
Assessment of Ozone Depletion,
Chapter 4, 2002
Global SAD Data Used in Model Studies.
Thomason et al., JGR, 1996
Aerosol SAD
Agung
El Chichon
Mt Pinatubo
Carslaw et al., Rev. Geophys., 1997
Liquid (STS)
Stratospheric Aerosols
Types:
Solid (NAT)
Fahey et al., Science, 2001
NASA SOLVE Mission
LIQUID
SOLID
CCM Approach - Heterogeneous Processes
Considine, +Drdla et al., JGR, 108, 8318, 2003.
Sulfate Aerosols (H2O, H2SO4) - LBS
k=1/4*V*SAD*
Rlbs = 0.1 mm
(SAD from SAGEII)
>200 K
Sulfate Aerosols (H2O, HNO3, H2SO4) - STS
Thermo. Model (Tabazadeh)
Rsts = 0.5 mm
?
Nitric Acid Hydrate (H2O, HNO3) – NAT
188 K
(Tsat)
RNAT= 6.5 mm; 2.3(-4) cm-3
ICE (H2O, with NAT Coating)
185 K
(Tnuc)
Rice= 10-30 mm
Denitrification
T (K)
86N, ZA
HNO3 (vmr)
86N, ZA
Santee et al., MLS
Aura Proposal
(2007) will evaluate
the denitrification
approach in
WACCM3
H2O SH- Dehydration
POAMIII, 1998
WACCM3 (sampled like POAMIII)
Mid-latitude
Mid-latitudeAir
Air
Altitude (km)
Altitude (km)
Mid-latitude
AirAir
Mid-latitude
Dehydration
Dehydration
Day of Year
Dehydration
Dehydration
Day of Year
WMO 2002, Figure 3-19,
Nedoluha et al., 2000.
Dehydration derived in
prognostic H2O Routines
in CAM3!
Courtesy of Cora Randall, CU/LASP
86S, 43 hPa, Zonal Mean
NO2
ClONO2 + HCl +> Cl2 + HNO3
Cl2 + hv => 2Cl
2(Cl + O3 => ClO + O2)
ClO + ClO + M => Cl2O2 + M
Cl2O2 + hv => 2Cl + O2
------------------------------------2O3 => 3O2
JCl2O2 Caveat…
New Cl2O2 cross sections from
Pope, Hansen, Bayes, Friedl,
and Sander, J. Phys. Chem. A.,
2007…
“For conditions representative
of the polar vortex (solar zenith
angle of 86, 20km, and O3 and
T profiles measured in March
2000) calculated photolysis
rates are a factor of six lower
than the current NASA
recommendation. This large
discrepancy calls into question
the completeness of present
atmospheric models of polar
ozone depletion.”
Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Future Development
Model Chemistry - Photolytic Processes
O2 + hv -> O (3P) + O(1D);
d[O2]/dt = -JO2 [O2]
JO2 (p) =  Fexo (,t) x Nflux(p, ) x  () x  ()
Inline (33 Bins)
121 nm
LUT (67 Bins)
• JO2 Lyman Alpha
• JO2 SRB
• JNO SRB
•  x  of 20 species
• Nflux (p, ) is funct.(O3, O2)
Heating and
Photolysis rates
EUV (23 Bins)
0.05 nm
750 nm
200 nm
121 nm
• Nflux is based on TUV (Madronich)
• Nflux (p, ) is function of (Col. O3; Zenith
Angle, Albedo)
•  x  is function of ( T, p )
CAM3 SW Heating rates
Fexo for Solar Cycle Studies: Model Input
Spectral composite
courtesy of:
Judith Lean (NRL)
and
Tom Woods (CU/LASP)
Ion Chemistry Included in WACCM3: NOx
Production
Ion species:
N2+ , O2+ , N+ , O+ , NO+ , and e
Photon / Photoelectron processes
with O, N, O2, N2
Reactions with Neutrals:
r1: O+ + O2 -> O2+ + O
r2: O+ + N2 -> NO+ + N
r3: N2+ + O -> NO+ + N(2D)
r4: O2+ + N -> NO+ + O
r5: O2+ + NO -> NO+ + O2
r6: N+ + O2 -> O2+ + N
r7: N+ + O2 -> NO+ + O
r8: N+ + O -> O+ + N
r9: N2+ + O2 -> O2+ + N2
r10: O2+ + N2 -> NO+ + NO
r11: N2+ + O -> O+ + N2
Reactions the produce NOx
ra1: NO+ + e -> N + O (20%)
-> N(2D) + O (80%)
ra3: N2+ + e -> 2N (10%)
-> N(2D) + N (90%)
N(2D) + O2 => NO + O
Courtesy of D. Marsh
SPE’s
Model Chemistry - Photolytic Processes
O2 + hv -> O (3P) + O(1D);
d[O2]/dt = -JO2 [O2]
JO2 (p) =  Fexo (,t) x Nflux(p, ) x  () x  ()
Inline (33 Bins)
121 nm
LUT (67 Bins)
• JO2 Lyman Alpha
• JO2 SRB
• JNO SRB
•  x  of 20 species
• Nflux (p, ) is funct.(O3, O2)
Heating and
Photolysis rates
EUV (23 Bins)
0.05 nm
750 nm
200 nm
121 nm
• Nflux is based on TUV (Madronich)
• Nflux (p, ) is function of (Col. O3; Zenith
Angle, Albedo)
•  x  is function of ( T, p )
CAM3 SW Heating rates
Heating Rate Approach
Solar Energy, h
Atomic and
Molecular Internal
Energy
Translational
Energy
Chemical Potential
Energy
Radiative Loss
Heating Rate Approach Cont…
O3
O2
+ h (<175 nm)
+ h (<310 nm)
O(1D)
+N2
+
Heat
+O2
O2 (1)
+M
O2 (1)
Heat
Heat
N2 (v)
Heat
N2
762 nm
865 nm
O(3P)
O2
Heat
+M
Heat
CO2 (001)
Heat
4.3 mm
CO2
O2
1.27 mm
O2
Chemical Potential Heating Reactions
Chemical Reactions
KJ/mole
Chemical Reactions
O + O3 => 2O2
-392.19
O (1D) + O2 => O + O2 (1)
O + O + M => O2 + M
-493.58
O (1D) + N2 => O + N2
O + OH => H + O2
-67.67
Chemical Reactions
KJ/mole
-32.91
-189.91
KJ/mole
O + HO2 => OH + O2
-226.58
O2 (1) + O => O2 (1) + O
-62.60
H + O2 + M => HO2 + M
-203.40
O2(1) + O2 => O2 (1) + O2
-62.60
O + O2 + M => O3 + M
-101.39
O2 (1) + N2 => O2 (1) + N2
-62.60
H + O3 => OH + O2
-194.71
O2 (1) + O3 => O2 (1) + O3
-62.60
O2 (1)+ O => O2 + O
-94.30
HO2 + NO => NO2 + OH
-34.47
HO2 + O3 => OH + 2O2
-120.10
O2 (1)+ O2 => 2O2
-94.30
HO2 + HO2 => H2O2 + O2
-165.51
O2 (1)+N2 => O2 + N2
-94.30
OH + O3 => HO2 + O2
-165.30
NO + O3 => NO2 + O2
-199.17
NO2 + O => NO + O2
-193.02
OH + HO2 => H2O + O2
-293.62
H + HO2 => H2 + O2
-232.59
Chemical Reactions
KJ/mole
N (2D) + O2 => NO + O(1D)
-177.51
N (2D) + O => N + O
-229.61
N + O2 => NO + O
-133.75
N + NO => N2 + O
-313.75
Mlynczak and Solomon, 1993
Plus 12 ion-neutral CPH reactions
Heating Rate Approach (WACCM)
WACCM3 SW
LUT/Parm. 121-750nm
(Thermal+CPH-AG)
CAM3 SW Heating,
>200nm (O3, O2, H2O)
Tutorial Outline…
• In the Beginning…
• Chemistry Preprocessor
• Numerical Solution Approach
• Chemical Mechanism (s)
• Boundary Conditions (UB,LB, In Situ)
• Heterogeneous Processes
• Photolysis / Heating Rates
• Summary / Future Development
Next Major Chemistry Updates
Topic
Mechanism
Contact
D. Kinnison
J. Orlando,
J.F. Lamarque,
R. Salawitch
Gas-phase
Reactions
D. Kinnison
Photolysis
D. Kinnison
S. Walters
Action/Comments
• Add Halon 2402 to Middle
•
Atmosphere
Implement a Whole Atm Mechanism
(w/NMHC’s; will not include shortlived Org-Br)
Add Short-lived Org Bromine species
•
• Update to JPL06
• Update to JPL06
• JCl2O2 cross sections?
• Add temperature dependence to
•
•
•
wavelengths < 200nm.
Extend reference atmosphere profile
in STUV (>140km)
Speed up? Reduce memory imprint?
Photochemical Benchmark.
Completion
Date
• Fall 2007
• Fall 2007
• Fall 2007
Bromine Chemistry…
32N
Chapter 2, WMO, 2007
Next Major Chemistry Updates
Topic
Mechanism
Contact
D. Kinnison
J. Orlando,
J.F. Lamarque,
R. Salawitch
Gas-phase
Reactions
D. Kinnison
Photolysis
D. Kinnison
S. Walters
Action/Comments
• Add Halon 2402 to Middle
•
Atmosphere
Implement a Whole Atm Mechanism
(w/NMHC’s; will not include shortlived Org-Br)
Add Short-lived Org Bromine species
•
• Update to JPL06
• Update to JPL06
• JCl2O2 cross sections?
• Add temperature dependence to
•
•
•
wavelengths < 200nm.
Extend reference atmosphere profile
in STUV (>140km)
Speed up? Reduce memory imprint?
Photochemical Benchmark.
Completion
Date
• Fall 2007
• Fall 2007
• Fall 2007
Next Major Chemistry Updates
Topic
Contact
Action/Comments
Lower
Boundary
Condition
D. Kinnison
S. Walters
• Use finer temporal resolution
Update
Sulfate SAD
D. Kinnison
S. Tilmes
A. Gettelman
• Update to SPARC SAD data; better in • Done
Evaluate
Radical
Chemistry
D. Kinnison
R. Salawitch
• Use PSS model.
• Compare Odd-Ox rates to balloon
•?
Evaluate
Polar de-NOy
D. Kinnison,
M. Santee
• Compare denitrification in WACCM3
•?
observations for REF1; Get from
SPARC CCMVal
•
R. Garcia,
F. Sassi,
J. Richter
• Summer
2007
polar region
Derive Heating rates from SAD
data.
•
Stratospheric
Temperatures
Completion
Date
to Aura MLS data.
Move setting routine out of
chemistry?
• Improvements in Temperature
•
representation in WACCM3
GW Tuning
•?
The End