Transcript Slide 1
المحاضرة الرابعة عشر 1 Lecture No. : 14 2 3 Example 1: Calculate the deformations of the shown frame where E = 106 kN/m2, and the section of all members is rectangular with dimension 30 cm x 80 cm. 30 kN/m A 8 B 120 kN 120 kN D 8 C 4 d2 d3 d5 d6 d1 d4 B A D 8 C 5 Stiffness matrix K= 30,300 0 1,200 -30,000 0 0 0 30,300 1,200 0 -300 1,200 1,200 1,200 12,800 0 -1,200 3,200 -30,000 0 0 30,300 0 1,200 0 -300 -1,200 0 30,300 -1,200 0 1,200 3,200 1,200 -1,200 12,800 6 Force vector 30 kN/m A B 120 kN 120 kN 8 D 30x82 12 160 kNm 30 kN/m A C 8 160 kNm B 120 kN 120 kN 8 7 Force vector 30 kN/m A 120x8 8 60 kN 120 kNm B 120 kN 120 kN 8 D B C 8 120 kN 8 60 kN C 120 kNm 120x8 8 8 Force vector 30 kN/m A 120 kNm 120x8 8 A 8 B 120 kN 120 kN 8 D 60 kN C 8 120 kN D 60 kN 120 kNm 120x8 8 9 Force vector 160 kNm A Fixed End Reaction (FER) 160 kNm 30 kN/m B 120 kNm 120 kNm 120 kN A 60 kN 120 kN 60 kN B 120 kN 120 kN D 120 kNm 60 kN 60 kN C 10 120 kNm Force vector Fixed End Action (FEA) 160 kNm 30 kN/m 160 kNm A B 120 kNm 120 kNm 120 kN A 120 kN 60 kN 60 kN d3 120 kN d2 d1 A D 120 kNm 60 kN d6 B d5 120 kN d4 B D C 60 kN C 11 120 kNm Force vector 160 kNm Fixed End Action (FEA) 30 kN/m A B 120 kN d3 A 60 kN B 120 kN 60 kN C 120 kNm C F1 60 F2 -120 F3 - 40 F4 120 kNm d4 B D 120 kNm 120 D 60 kN d6 d1 d5 120 kN 120 kNm A 60 kN 160 kNm d2 = - 60 F5 -120 F6 40 12 Stiffness Equation F= K D 60 30,300 -120 0 - 40 - 60 = 0 30,300 1,200 1,200 1,200 12,800 -30,000 0 0 0 d1 0 -300 1,200 d2 0 -1,200 3,200 d3 1,200 -30,000 0 30,300 -120 0 -300 -1,200 40 0 1,200 3,200 1,200 0 1,200 d4 30,300 -1,200 d5 -1,200 12,800 d6 0 13 Stiffness Equation D = K-1 F -1 d1 30,300 d2 0 d3 d4 = 0 1,200 -30,000 30,300 1,200 1,200 1,200 12,800 -30,000 0 0 0 0 60 0 -300 1,200 -120 0 -1,200 3,200 - 40 30,300 d5 0 -300 -1,200 d6 0 1,200 3,200 1,200 0 0 1,200 - 60 30,300 -1,200 -120 -1,200 12,800 40 14 Deformations d1 0.0010806 d2 - 0.004 d3 - 0.0043017 d4 = - 0.0010806 d5 - 0.004 d6 0.0043017 15 Another Solution 30 kN/m A 8 B 120 kN 120 kN D 8 C 16 Another Solution d3 d2 d1 d2 d1 d3 B A k11 k12 k13 K = k21 k22 k23 k31 k32 k33 D 8 C 17 First column in Stiffness matrix d1 =1 d1 d1 18 First column in Stiffness matrix 2EA 1 6 EI L 1,200 L2 2E A L 2 60,000 60,000 300 12 EI L3 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 19 First column in Stiffness matrix 60,000 60,000 1,200 300 d2 d3 d1 k11 k21 = k31 60,300 0 1,200 20 Second column in Stiffness matrix d2 =1 d2 d2 21 Second column in Stiffness matrix EA/L = 30,000 EA 30,000 L 1 d2 d3 d1 k12 0 k22 = 30,000 k32 0 22 Third column in Stiffness matrix d3 =1 d3 d3 23 Third column in Stiffness matrix 4 EI 6,400 L 1 1,200 6 EI L2 a 24 Third column in Stiffness matrix d3 =1 d3 d3 25 1 4 EI L 2 EI L 1 4 EI L 2 EI L 1 2 EI L 1 2 EI L 26 Third column in Stiffness matrix 1 4 EI 6,400 L 1,200 2 EI L 1 3,200 2 EI 1 L 3,200 6 EI L2 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 27 Third column in Stiffness matrix 4 EI 6,400 L 2 EI L 1,200 6 EI L2 2 EI L 3,200 3,200 d2 d3 d1 k13 k23 = k33 1,200 0 9,600 28 Stiffness matrix k11 k21 = k31 60,300 0 1,200 K= k12 k13 0 k22 = 30,000 k23 = k32 k33 0 60,300 0 1,200 0 30,000 0 1,200 0 9,600 1,200 0 9,600 29 Force vector 30 kN/m A B 120 kN 120 kN 8 D 30x82 12 160 kNm 30 kN/m A C 8 160 kNm B 120 kN 120 kN 8 30 Force vector 30 kN/m A 120 kNm 120x8 8 B 8 B 120 kN 120 kN 8 D 60 kN C 8 120 kN C 60 kN 120 kNm 120x8 8 31 Force vector 160 kNm A Fixed End Reaction (FER) 160 kNm 30 kN/m B 120 kNm 120 kN 120 kN B B 60 kN 120 kN 120 kN C 120 kNm 60 kN C 32 Force vector 160 kNm A Fixed End Action (FEA) 160 kNm 30 kN/m B 120 kNm 120 kN B 120 kN B 60 kN 120 kN 120 kN C C 120 kNm 60 kN 33 Force vector Fixed End Action (FEA) d2 160 kNm 30 kN/m A 160 kNm d3 d1 B 120 kN 120 kN 120 kNm B 60 kN F1 B F2 = -120 120 kN 120 60 kN C 120 kNm 60 F3 - 40 C 34 Stiffness Equation F= K D 60 -120 - 40 60,300 0 1,200 d1 0 30,000 0 d2 1,200 0 9,600 d3 D= -1 K F = -1 d1 d2 d3 = 60,300 0 1,200 60 0 30,000 0 -120 1,200 0 9,600 - 40 35 Deformations d1 d2 = d3 0.0010806 - 0.004 - 0.0043017 d1 0.0010806 d2 - 0.004 d3 - 0.0043017 d4 = - 0.0010806 d5 - 0.004 d6 0.0043017 36 Example 2: Calculate the deformations of the shown frame where E = 106 kN/m2, and the section of all members is rectangular with dimension 30 cm x 80 cm. A 8 B 120 kN 120 kN D 8 C 37 d2 d3 d5 d6 d1 d4 B A D 8 C 38 Stiffness matrix K= 30,300 0 1,200 -30,000 0 0 0 30,300 1,200 0 -300 1,200 1,200 1,200 12,800 0 -1,200 3,200 -30,000 0 0 30,300 0 1,200 0 -300 -1,200 0 30,300 -1,200 0 1,200 3,200 1,200 -1,200 12,800 39 Force vector 120 kNm A 120x8 8 B 8 B 120 kN 120 kN 8 D C 8 60 kN 120 kN C 60 kN 120 kNm 120x8 8 40 A Force vector B 120 kN 120 kNm 120x8 8 A 8 120 kN 8 D C 8 60 kN 120 kN D 60 kN 120 kNm 120x8 8 41 Force vector A 120 kNm A B 120 kNm B 60 kN 60 kN 120 kN 120 kN D 120 kNm Fixed End Reaction (FER) 60 kN C 120 kNm 60 kN 42 Force vector Fixed End Action (FEA) A B 120 kNm 120 kNm B B 60 kN d3 120 kN d2 d1 A C 120 kNm 60 kN d6 d5 d4 120 60 kN kN B D C C 120 kNm 60 kN 43 Force vector Fixed End Action (FEA) d3 A B B 60 kN 60 kN D60 kN 120 kNm C 120 kNm 60 kN d4 C F1 60 F2 0 F3 120 F4 d5 B D 120 kN 120 d6 d1 A 120 kNm 120 kNm A d2 = 60 F5 0 F6 120 44 Stiffness Equation F= K D 60 30,300 0 0 120 60 = 0 30,300 1,200 1,200 1,200 12,800 -30,000 0 0 0 d1 0 -300 1,200 d2 0 -1,200 3,200 d3 1,200 -30,000 0 30,300 0 0 -300 -1,200 120 0 1,200 3,200 1,200 0 1,200 d4 30,300 -1,200 d5 -1,200 12,800 d6 0 45 Stiffness Equation D = K-1 F -1 d1 30,300 d2 0 d3 d4 = 0 1,200 -30,000 30,300 1,200 1,200 1,200 12,800 -30,000 0 0 0 0 60 0 -300 1,200 0 0 -1,200 3,200 30,300 d5 0 -300 -1,200 d6 0 1,200 3,200 1,200 0 0 120 1,200 60 30,300 -1,200 0 -1,200 12,800 120 46 Deformations d1 0.2436 d2 0.009 d3 - 0.0109 d4 = 0.2436 d5 - 0.009 d6 - 0.0109 47 Another Solution A 8 B 120 kN 120 kN D 8 C 48 Another Solution d3 d2 d1 d3 k12 d1 B A k11 d2 k13 K = k21 k22 k23 k31 k32 k33 D 8 C 49 First column in Stiffness matrix d1 =1 d1 d1 50 First column in Stiffness matrix 1 6 EI 1,200 L2 300 12 EI L3 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 51 First column in Stiffness matrix 1,200 300 d2 d3 d1 k11 k21 = k31 300 0 1,200 52 Second column in Stiffness matrix d2 =1 d2 d2 53 Second column in Stiffness matrix E A 2,400 30,000 L 1 12 EI L2 2 12 EI 24 EI 3 2 L L 600 2,400 24 EI L3 600 b c d2 d3 d1 k12 0 k22 = 30,600 k32 2,400 54 Third column in Stiffness matrix d3 =1 d3 d3 55 Third column in Stiffness matrix 4 EI 6,400 L 1 1,200 6 EI L2 a 56 Third column in Stiffness matrix d3 =1 d3 d3 57 1 4 EI L 2 EI L 1 4 EI L 2 EI L 1 6 EI L 1 6 EI L 58 Third column in Stiffness matrix 1 4 EI 6,400 L 1,200 6 EI L2 6 EI L 1 9,600 6 EI L 9,600 2,400 2,400 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 59 Third column in Stiffness matrix 4 EI 6,400 L 9,600 1,200 6 EI L2 2,400 2,400 d2 d3 9,600 d1 k13 1,200 k23 = 2,400 k33 16,000 60 Stiffness matrix k11 k21 = k31 300 0 1,200 K= k12 0 k22 = 30,600 k32 2,400 300 0 1,200 0 30,600 2,400 1,200 k13 1,200 k23 = 2,400 k33 16,000 2,400 16,000 61 Force vector 120 kNm A 120x8 8 B 8 B 120 kN 120 kN 8 D C 8 60 kN 120 kN C 60 kN 120 kNm 120x8 8 62 A Force vector B 120 kN 120 kNm 120x8 8 A 8 120 kN 8 D C 8 60 kN 120 kN D 60 kN 120 kNm 120x8 8 63 Force vector A 120 kNm A B 120 kNm B 60 kN 60 kN 120 kN 120 kN D 120 kNm Fixed End Reaction (FER) 60 kN C 120 kNm 60 kN 64 Force vector Fixed End Action (FEA) A B 120 kNm 120 kNm B B 60 kN d2 d1 d3 120 kN d2 d3 C 120 kNm kN B A 60 kN d120 1 60 kN D C C 120 kNm 60 kN 65 Force vector Fixed End Action (FEA) d2 d2 d1 d3 d3 B A A B C D 120 kNm 120 kNm A B 60 kN 60 kN F1 120 kN 120 F2 = F3 D60 kN 120 kNm d1 C 120 kNm 60 0 120 60 kN 66 Stiffness Equation F= K D 60 300 0 1,200 d1 0 30,600 2,400 d2 2,400 16,000 d3 = 0 120 1,200 D= -1 K F -1 d1 d2 d3 = 300 0 1,200 60 0 30,600 2,400 0 2,400 16,000 120 1,200 67 Deformations d1 0.2436 d2 0.009 d3 - 0.0109 d1 0.2436 d2 0.009 d4 d3 - 0.0109 d5 - 0.009 d6 - 0.0109 = 0.2436 68 69 A B 50 kN D 8 C 70 d2 d3 d5 d6 d1 d4 B A D 8 C 71 Another solution d1 d1 B A D 8 C 72 First column in Stiffness matrix c b 30,000 1,200 d2 d3 300 d5 d1 b a 30,000 d6 c d d4 k11 30,300 k21 0 k31 1,200 k41 = c -30,000 k51 0 k61 0 d 73 Another solution d2 d3 d1 d1 B A D 8 C 74 Example 3: Calculate the deformations of the shown frame where E = 106 kN/m2, and the section of all members is rectangular with dimension 30 cm x 80 cm. 30 kN/m A 8 B 60 kN 120 kN D 8 C 75 d2 d3 d5 d6 d1 d4 B A D 8 C 76 Stiffness matrix K= 30,300 0 1,200 -30,000 0 0 0 30,300 1,200 0 -300 1,200 1,200 1,200 12,800 0 -1,200 3,200 -30,000 0 0 30,300 0 1,200 0 -300 -1,200 0 30,300 -1,200 0 1,200 3,200 1,200 -1,200 12,800 77 Force vector 30 kN/m A B 120 kN 120 kN 8 D 30x82 12 160 kNm 30 kN/m A C 8 160 kNm B 120 kN 120 kN 8 78 Force vector 30 kN/m A 120 kNm 120x8 8 A 8 B 120 kN 120 kN 8 D 60 kN C 8 120 kN D 60 kN 120 kNm 120x8 8 79 Force vector 30 kN/m A 60x8 8 30 kN 60 kNm B 120 kN 120 kN 8 D B C 8 60 kN 8 30 kN C 60 kNm 60x8 8 80 Force vector 160 kNm A Fixed End Reaction (FER) 160 kNm 30 kN/m B 120 kNm 120 kN A 60 kN 60 kNm 120 kN 30 kN B 120 kN 60 kN C 120 kNm 60 kN 30 kN C 60 kNm 81 Force vector Fixed End Action (FEA) 160 kNm 30 kN/m 160 kNm A B 120 kNm 120 kN A 60 kN 30 kN d3 120 kN d2 d1 A D 120 kNm 60 kN 60 kNm 120 kN d6 B d5 d4 60 kN B D C 30 kN C 60 kNm 82 Force vector 160 kNm Fixed End Action (FEA) 30 kN/m A B 120 kN d3 A B 30 kN 60 kN 120 D 120 kNm 30 kN C 60 kNm C F1 60 F2 -120 F3 - 40 F4 60 kN d4 B D 60 kNm 60 kN d6 d1 d5 120 kN 120 kNm A 160 kNm d2 = - 30 F5 -120 F6 100 83 Stiffness Equation F= K D 60 30,300 -120 0 - 40 - 30 = 0 30,300 1,200 1,200 1,200 12,800 -30,000 0 0 0 d1 0 -300 1,200 d2 0 -1,200 3,200 d3 1,200 -30,000 0 30,300 -120 0 -300 -1,200 100 0 1,200 3,200 1,200 0 1,200 d4 30,300 -1,200 d5 -1,200 12,800 d6 0 84 Stiffness Equation D = K-1 F -1 d1 30,300 d2 0 d3 d4 = 0 1,200 -30,000 30,300 1,200 1,200 1,200 12,800 -30,000 0 0 0 0 60 0 -300 1,200 -120 0 -1,200 3,200 - 40 30,300 d5 0 -300 -1,200 d6 0 1,200 3,200 1,200 0 0 1,200 - 30 30,300 -1,200 -120 -1,200 12,800 100 85 Deformations d1 0.0618 d2 - 0.0038 d3 - 0.0101 d4 = 0.0600 d5 - 0.0042 d6 0.0047 86 Another solution d2 d3 d1 B A k11 k12 d1 k13 K = k21 k22 k23 k31 k32 k33 D 8 C 87 First column in Stiffness matrix d1 =1 d1 d1 88 First column in Stiffness matrix 1 6 EI 1,200 L2 1,200 300 12 EI L3 300 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 89 First column in Stiffness matrix 1,200 300 d2 d1 d3 d1 1,200 300 k11 600 k21 = 1,200 k31 1,200 90 Second column in Stiffness matrix d2 =1 d2 91 Second column in Stiffness matrix 2 EI 3,200 L 1 4 EI 6,400 L 4 EI L 1 6,400 6 EI L2 1,200 6 EI L2 6 EI L2 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 92 Second column in Stiffness matrix 3,200 6,400 6,400 1,200 d2 d1 d3 k12 1,200 k32 3,200 d1 k22 = 12,800 93 Third column in Stiffness matrix d3 =1 d3 94 Sixth column in Stiffness matrix 2 EI L 3,200 6,400 4 EI L 4 EI 6,400L 1,200 1,200 6 EI L2 6 EI L2 1 1,200 1 6 EI L2 EA/L = 30,000 2 EI/L = 3,200 4 EI/L = 6,400 6 EI/L2 = 1,200 12EI/L3= 300 95 Sixth column in Stiffness matrix 6,400 3,200 6,400 1,200 d2 d1 1,200 1,200 d3 d1 k13 1,200 k23 = 3,200 k33 12,800 96 k11 600 k12 1,200 k13 1,200 3,200 k21 = 1,200 k22 = 12,800 k23 = k31 1,200 k32 k33 K= 3,200 600 1,200 1,200 1,200 12,800 3,200 1,200 3,200 12,800 12,800 97 Force vector 160 kNm A Fixed End Reaction (FER) 160 kNm 30 kN/m B 120 kNm 120 kN A 60 kN 60 kNm 120 kN 30 kN B 120 kN 60 kN C 120 kNm 60 kN 30 kN C 60 kNm 98 Force vector 160 kNm Fixed End Action (FEA) 160 kNm 30 kN/m A B 120 kNm 120 kN A 60 kN 120 kN d1 d3 30 kN B d1 60 kN D 120 kNm d2 60 kNm 120 kN 60 kN 30 kN C 60 kNm 99 Force vector 160 kNm 30 kN/m A B 120 kN 120 kN 120 kNm A Fixed End Action (FEA) d3 d2 d1 d1 160 kNm 60 kNm F1 B 60 kN 30 kN F2 = - 40 60 kN 120 60 kN D 120 kNm 30 F3 100 30 kN C 60 kNm 100 Stiffness Equation F= K D 30 600 1,200 1,200 d1 - 40 = 1,200 12,800 3,200 d2 100 1,200 3,200 12,800 d3 D= d1 -1 600 d2 = 1,200 d3 -1 K F 1,200 1,200 1,200 30 12,800 3,200 - 40 3,200 12,800 100 101 Deformations d1 0.0618 d1 0.0607 d2 - 0.0038 d2 -0.0100 d3 - 0.0101 d3 0.0046 d4 = 0.0600 d5 - 0.0042 d6 0.0047 102 103 Example 4: Draw N.F, S.F & B.M.Ds for the shown frame where E = 106 kN/m2 12 kN/m A B m2 A=0.6 I = 0.02 m4 3 m2 A=0.4 I = 0.005 m4 50 kN 2 C 8 60 104 Modeling A d2 d3 d1 B d5 d4 C 105 Stiffness matrix k11 k12 k13 k14 k15 k21 k22 k23 k24 k25 K = k31 k32 k33 k34 k35 k41 k42 k43 k44 k45 k51 k52 k53 k54 k55 106 First column in Stiffness matrix d =1 1 A d1 B C 107 First column in Stiffness matrix 1 A A B B 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 C C EA L 1 6 EI L2 12 EI L3 12 EI L3 6 EI L2 108 First column in Stiffness matrix 75,000 1200 106x.6 6X106X.005 8 52 12X106X.005 A 53 480 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 480 1200 C 109 First column in Stiffness matrix 75,000 1200 A B d2 d3 d1 d4 d5 k11 75,480 k21 0 k31 = 1200 k41 - 240 k51 1200 480 C 480 60 240 1200 110 Second column in Stiffness matrix d2 =1 d2 A B C 111 Second column in Stiffness matrix 12 EI L3 A A 6 EI L2 EA L 1 1 B 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 C C 112 Second column in Stiffness matrix 6X106X.02 469 12X106X.02 82 1875 80,000 106x.4 5 83 A A B 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 C C 80,000 113 Second column in Stiffness matrix 1875 80,000 469 B A k12 d2 d3 d1 d4 d5 0 k22 = 80,469 k32 -1875 k42 -69,282 k52 0 C 80,000 sin 60 69,282 80,000 114 Third column in Stiffness matrix d3 =1 A d3 B C 115 Third column in Stiffness matrix 4 EI L A 6 EI L2 A 4 EI L 5 A=0.4 m2 I = 0.005 m4 8 1 6 EI L2 6 EI L2 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 B 1 C 2 EI L C 116 Third column in Stiffness matrix 4X106X.02 4,000 5 8 10,000 A 6X106X.02 82 A 4X106X.005 E= 106 1 6X106X.005 52 1875 6X106X.005 kN/m2 B 52 1200 A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 B 1 1200 C 2X106X.005 C 5 2,000 117 Third column in Stiffness matrix A B 4,000 10,000 1200 1875 d2 d3 d1 k13 1200 k23 -1875 k33 = 14,000 k43 d4 d5 k53 1200 60 - 600 2,000 600 C 2,000 118 Fourth column in Stiffness matrix d4 =1 A B C 119 Fourth column in Stiffness matrix A A B 6 EI L3 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 C 0.5 6 EI L3 3 EI L2 3 EI L2 120 Fourth column in Stiffness matrix 3X106X.005 52 A 600 240 B 6X106X.005 53 A E= 106 6X106X.005 kN/m2 B 53 m2 A=0.6 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 240 3X106X.005 C 52 600 121 A EA Sin 60 L B 80,000 sin 60 69,282 C C Sin 60 60 EA Sin 60 L 69,282 122 69,282 Fourth column in Stiffness matrix 600 240 A B d2 d3 d1 d4 d5 k14 - 240 k24 -69,282 k34 = - 600 k44 60,120 k54 - 600 240 600 240 cos 60 120 69,282 69,282 sin 60 60,000 123 Fifth column in Stiffness matrix d5 =1 A B d5 C 124 Fifth column in Stiffness matrix A 2 EI L B 6 EI L2 A 6 EI L2 2 E = 106 kN/mB A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 1 C 4 EI L C 125 Fifth column in Stiffness matrix 2X106X.005 2,000 5 A 1200 B 6X106X.005 52 A 6X106X.005 2 E = 106 kN/mB 52 1200 A=0.6 m2 I = 0.02 m4 5 A=0.4 m2 I = 0.005 m4 8 4X106X.005 C 5 1 C 4,000 126 Fifth column in Stiffness matrix A 2,000 B 1200 d2 d3 d1 d4 d5 k15 1200 k25 0 k35 = 2,000 k45 - 600 k55 4,000 1200 60 C 600 4,000 127 k11 75,480 k12 0 k13 1200 k21 0 k22 80,469 k23 -1875 k31 1200 k32 -1875 k41 - 240 k42 -69,282 k33 = 14,000 k43 - 600 k51 1200 k52 0 = = k53 2,000 k14 - 240 k15 1200 k24 -69,282 k25 0 k34 = - 600 k35 = 2,000 k44 60,120 k45 - 600 k54 - 600 k55 4,000 128 Stiffness matrix 75,480 0 K = 1200 - 240 1200 - 240 1200 80,469 -1875 -69,282 0 -1875 14,000 - 600 2,000 0 1200 -69,282 - 600 0 2,000 60,120 - 600 - 600 4,000 129 Force vector 12 kN/m A B m2 A=0.6 I = 0.02 m4 3 A=0.4 m2 I = 0.005 m4 8 50 kN 2 C 130 Force vector 12x82 64 kNm 12 12 kN/m A 64 kNm B 48 kN 48 kN 8 131 Force vector 50x3x22 24 kNm 52 3 17.6 kN B 50 kN 2 32.4 kN C 36 kNm 50x2x32 52 132 Fixed End Reaction (FER) Force vector 64 kNm 64 kNm 24 kNm A 48 kN B 48 kN 17.6 kN 32.4 kN B C 36 kNm 133 Fixed End Action (FEA) Force vector 64 kNm 64 kNm A B 48 kN d1 F d4 d5 17.6 kN B 48 kN d2 d3 24 kNm F1 -17.6 F2 - 48 40 = F3 = F4 - 16.2 F5 32.4 kN C 16.2 kN 36 kNm 36 134 F= K D -17.6 75,480 - 48 0 40 = 1200 - 16.2 - 240 36 1200 - 240 1200 80,469 -1875 -69,282 0 -1875 14,000 - 600 2,000 0 1200 -69,282 - 600 0 2,000 60,120 - 600 - 600 4,000 d1 d2 d3 d4 d5 135 D = K-1 F -1 - 240 1200 0 1200 d1 75,480 d2 0 80,469 -1875 -69,282 0 d3 = 1200 -1875 14,000 - 600 2,000 d4 - 240 -69,282 - 600 60,120 - 600 d5 1200 0 2,000 - 600 4,000 -17.6 - 48 40 - 16.2 36 136 - 0.0007 D = K-1 F - 0.0008 - 0.0088 - 0.2244 - 0.0538 A B C d1 - 0.0002 - 0.43796 d2 d3 = - 0.07314 - 0.50601 d4 d5 - 0.03027 A B C 60 137 Questions 138