Dynamics of Quantum-Degenerate Gases at Finite Temperature

Download Report

Transcript Dynamics of Quantum-Degenerate Gases at Finite Temperature

Dynamics of Quantum Degenerate Gases at Finite Temperature

Brian Jackson

University of Trento, and INFM-BEC

Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March 14-15

In collaboration with:

Eugene Zaremba (Queen’s University, Canada) Allan Griffin (University of Toronto, Canada) Jamie Williams (NIST, USA) Tetsuro Nikuni (Tokyo Univ. of Science, Japan)

In Trento:

Sandro Stringari Lev Pitaevskii Luciano Viverit

Bose-Einstein condensation: Cloud density vs. temperature

Decreasing Temperature

Bose-Einstein condensation: Condensate fraction vs. temperature

J. R. Ensher

et al.

, Phys. Rev. Lett.

77

, 4984 (1996)

Outline

• • •

Bose-Einstein condensation at finite T

• • •

collective modes ZNG theory and numerical methods applications: scissors, quadrupole, and transverse breathing modes Normal Fermi gases

Collective modes in the unitarity limit Summary

Collective modes: zero T

Condensate confined in magnetic trap, which can be approximated with the harmonic form:

Collective modes: zero T

Change trap frequency: condensate undergoes undamped collective oscillations

Collective modes: zero T

Gross-Pitaevskii equation:

Normalization condition:

a

: s-wave scattering length

m

: atomic mass

Collective modes: finite T

Finite temperature: Condensate now coexists with a noncondensed thermal cloud

Collective modes: finite T

Change trap frequency: condensate now oscillates in the presence of the thermal cloud

Collective modes: finite T

But!

Condensate now pushes on thermal cloud- the response of which leads to a damping and frequency shift of the mode

Collective modes: finite T

And Change in trap frequency also excites collective oscillations of the thermal cloud , which can couple back to the condensate motion

ZNG Formalism

Bose broken symmetry: condensate wavefunction: condensate density: thermal cloud densities:

‘normal’ ‘anomalous’ Dynamical Equations

E. Zaremba, T. Nikuni, and A. Griffin, JLTP

116

, 277 (1999)

ZNG Formalism

Generalized Gross-Pitaevskii equation:

Popov approximation: E. Zaremba, T. Nikuni, and A. Griffin, JLTP

116

, 277 (1999)

ZNG Formalism

Boltzmann kinetic equation: Hartree-Fock excitations: moving in effective potential: phase space density: (semiclassical approx.)

f

(

r

,

p

,

t

) E. Zaremba, T. Nikuni, and A. Griffin, JLTP

116

, 277 (1999)

ZNG Formalism

Boltzmann kinetic equation:

E. Zaremba, T. Nikuni, and A. Griffin, JLTP

116

, 277 (1999)

Coupling:

ZNG Formalism

mean field coupling E. Zaremba, T. Nikuni, and A. Griffin, JLTP

116

, 277 (1999)

Coupling:

ZNG Formalism

Collisional coupling (atom transfer) E. Zaremba, T. Nikuni, and A. Griffin, JLTP

116

, 277 (1999)

Numerical Methods

Follow system dynamics in discrete time steps: 1. Solve GP equation for  with FFT split-operator method 2. Evolve Kinetic equation using

N

-body simulations: • •

Collisionless dynamics – integrate Newton’s equations using a symplectic algorithm Collisions – included using Monte Carlo sampling

3. Include mean field coupling between condensate and thermal cloud B. Jackson and E. Zaremba, PRA

66

, 033606 (2002).

Applications

Numerical simulations useful in understanding the following experiments, that studied collective modes at finite-T:

• • •

Scissors modes

(Oxford): PRL

86

, 3938 (2001).

O. M. Maragò

et al

.,

Quadrupole modes

(JILA):

78

, 764 (1997).

D. S. Jin

et al.

, PRL

Transverse breathing mode

(ENS): F. Chevy

al.

, PRL

88

, 250402 (2002).

et

Scissors modes

Excited by sudden rotation of the trap through a small angle at

t = 0

Signature of superfluidity!

D. Guéry-Odelin and S. Stringari, PRL

83

, 4452 (1999

)

O. M. Maragò et al., PRL

84

, 2056 (1999

)

Scissors modes

condensate frequency: with irrotational velocity field: thermal cloud frequencies:

Experiment:

O. Maragò

et al.

, PRL

86

, 3938 (2001).

Theory:

B. Jackson and E. Zaremba

.

, PRL

87

, 100404 (2001).

JILA experiment

m = 0

condensate: thermal cloud:

Experiment:

D. S. Jin

et al.

, PRL

78

, 764 (1997).

Theory:

B. Jackson and E. Zaremba

.

, PRL

88

, 180402 (2002).

JILA experiment

Excitation scheme:

modulate trap potential

m = 0

= 1.95

 

T ´ = 0.8

condensate thermal cloud

Drive frequencies

Solid symbols – maximum condensate amplitude

ENS experiment

m = 0

mode in an elongated trap

Excitation scheme: excites oscillations in both condensate and thermal cloud Experiment:

F. Chevy

et al.

, PRL

88

, 250402 (2002).

Theory:

B. Jackson and E. Zaremba

.

, PRL

89

, 150402 (2002).

ENS experiment

m = 0

mode in an elongated trap Condensate oscillates at Thermal cloud oscillates at Condensate and thermal cloud oscillate together with same amplitude at frequency

Experiment:

F. Chevy

et al.

, PRL

88

, 250402 (2002).

Theory:

B. Jackson and E. Zaremba

.

, PRL

89

, 150402 (2002).

‘tophat’ excitation scheme collisions

condensate thermal cloud

experiment theory

excite condensate only collisions

condensate thermal cloud

Fermi gases

Motivation: Experiment by O’Hara et al., Science 298, 2179 (2002).

• Cool 6 Li atoms (50-50 mixture of 2 hyperfine states) to quantum degeneracy T « T F • Static B-field tuned close to Feshbach resonance, a~ -10 4 a 0 • Observe anisotropic expansion of the cloud

Fermi gases

Motivation: Experiment by O’Hara et al., Science 298, 2179 (2002).

• Cool 6 Li atoms (50-50 mixture of 2 hyperfine states) to quantum degeneracy T « T F • Static B-field tuned close to Feshbach resonance, a~ -10 4 a 0 • Observe anisotropic expansion of the cloud  Hydrodynamic behaviour, implying either:  Gas is superfluid (BCS or BEC)  Gas is normal, but collisions are frequent

Fermi gases

Feshbach resonance:

Collision cross section:

Jochim et al., PRL 89, 273202 (2002).

= relative velocity of colliding atoms

Fermi gases

Feshbach resonance:

Low

k

limit:

Jochim et al., PRL 89, 273202 (2002).

= relative velocity of colliding atoms

Fermi gases

Feshbach resonance:

Unitarity limit:

Jochim et al., PRL 89, 273202 (2002).

= relative velocity of colliding atoms

Quadrupole collective modes: In-phase modes:

L. Vichi, JLTP

121

, 177 (2000)

Taking moments:

Taking moments:

Solve set of equations for   

R

i

Example:

transverse breathing mode in a cigar-shaped trap • collisionless limit:

ωτ » 1

R

 2   • hydrodynamic limit:

ωτ « 1

R

 ( 10 / • intermediate regime:

ωτ ~ 1

3 )   ( 10 / 3 )    

R

 2         0 0 0

Low

k

limit:

Unitarity limit: N=1.5

 10 5  =0.035

(    )  1  3 (    )  1  2 (    )  1  1

Summary

Bose condensates at finite temperatures:

 studied damping and frequency shifts of various collective modes  Comparison with experiment shows good to excellent agreement, illustrating utility of scheme •

Normal Fermi gases:

 relaxation times of collective modes  simulations  rotation, optical lattices, superfluid component…