Transcript Slide 1

Lecture Outlines
Chapter 17
Physics, 3rd Edition
James S. Walker
© 2007 Pearson Prentice Hall
This work is protected by United States copyright laws and is provided solely for
the use of instructors in teaching their courses and assessing student learning.
Dissemination or sale of any part of this work (including on the World Wide Web)
will destroy the integrity of the work and is not permitted. The work and materials
from it should never be made available to students except by instructors using
the accompanying text in their classes. All recipients of this work are expected to
abide by these restrictions and to honor the intended pedagogical purposes and
the needs of other instructors who rely on these materials.
Chapter 18
The Laws of
Thermodynamics
Units of Chapter 18
• The Zeroth Law of Thermodynamics
• The First Law of Thermodynamics
• Thermal Processes
• Specific Heats for an Ideal Gas: Constant
Pressure, Constant Volume
• The Second Law of Thermodynamics
• Heat Engines and the Carnot Cycle
Units of Chapter 18
• Refrigerators, Air Conditioners, and Heat
Pumps
• Entropy
• Order, Disorder, and Entropy
• The Third Law of Thermodynamics
18-1 The Zeroth Law of Thermodynamics
We have already discussed
the zeroth law, and include it
here for completeness:
If object A is in thermal
equilibrium with object C,
and object B is separately in
thermal equilibrium with
object C, then objects A and
B will be in thermal
equilibrium if they are
placed in thermal contact.
18-2 The First Law of Thermodynamics
The first law of thermodynamics is a statement of
the conservation of energy.
If a system’s volume is constant, and heat is
added, its internal energy increases.
18-2 The First Law of Thermodynamics
If a system does work on the external world, and
no heat is added, its internal energy decreases.
18-2 The First Law of Thermodynamics
Combining these gives the first law of
thermodynamics. The change in a system’s
internal energy is related to the heat Q and the
work W as follows:
It is vital to keep track of the signs of Q and W.
18-2 The First Law of Thermodynamics
The internal energy of the system depends only
on its temperature. The work done and the heat
added, however, depend on the details of the
process involved.
Example 18-1 Heat, Work, and Internal Energy
På en joggningstur på stranden utför en person W = 430 kJ och avger
Q = - 380 kJ. Vad är ändringen i den inre energin? När personen övergår
till promenad, avgår Q = - 120 kJ och ΔU = - 260 kJ. Vad blev W?
Example 18-1 Heat, Work, and Internal Energy
På en joggningstur på stranden utför en person
arbetet 430 kJ och avger värmet 380 kJ. Vad är
ändringen i den inre energin?
ΔU = Q - W = - 380 kJ - 430 kJ = - 810 kJ
När personen övergår till promenad, avgår
värmet 120 kJ och ändringen i inre energi blir
- 260 kJ. Vad blir W?
ΔU = Q - W ger
W = Q - ΔU = -120 kJ – (- 260 kJ) = 140 kJ
18-3 Thermal Processes
We will assume that all processes we discuss
are quasi-static – they are slow enough that the
system is always in equilibrium.
We also assume they are reversible:
For a process to be reversible, it must be possible to
return both the system and its surroundings to exactly
the same states they were in before the process began.
18-3 Thermal Processes
This is an idealized reversible process. The gas
is compressed; the temperature is constant, so
heat leaves the gas. As the gas expands, it
draws heat from the reservoir, returning the gas
and the reservoir to their initial states. The
piston is assumed frictionless.
18-3 Thermal Processes
Work done by an expanding gas, constant
pressure (isobar process): (18-4)
Exercise 18-1
En gas med det konstanta trycket 150 kPa
expanderar från ursprungsvolymen 0,76 m3 till
0,92 m3. Hur stort arbete utför gasen?
W = PΔV = 150 kPa(0,92 – 0,76)m3 = 24 kJ
Example 18-2
Work Area
Example 18-2
En gas expanderar från ursprungsvolymen 0,40
m3 till 0,62 m3 under det att trycket ökar linjärt
från 110 kPa till 230 kPa. Hur stort arbete utför
gasen? (W = PΔV)
”Kvadraten” ger arbetet
W1 = 110 kPa(0,62 – 0,40)m3 = 24,2 kJ
”Triangeln” ger arbetet
W2 = {(230 – 110)kPa(0,22 m3)}/2 = 13,2 kJ
W = 37 kJ
18-3 Thermal Processes
If the volume stays constant (isochor process),
nothing moves and no work is done.
Active Example 18-1
Find the Total Work
Active Example 18-1 Find the Total Work
En gas undergår en trestegs process enligt figur
18-7. Hur stort arbete utför gasen under
processen från A till B?
Längs 1 är arbetet
W1 = 120kPa(0,40 m3 - 0,25 m3) = 18 kJ
W2 = 0 (isochor process)
Längs 3 ger ”kvadraten” arbetet
W3k = 120 kPa(0,54 – 0,40)m3 = 16,8 kJ
och ”triangeln” ger arbetet
W3t = {(180 – 120)kPa(0,14 m3)}/2 = 4,2 kJ
W = 39 kJ
18-3 Thermal Processes
If the temperature is constant
(isoterm process), the pressure
varies inversely with the volume.
[PV=NkT]
18-3 Thermal Processes
The work done is the area under the curve:
W = ∫P•dV = {P =NkT/V} = NkT∫dV/V=NkT•ln(Vf / Vi)
Example 18-3
Heat Flow
Example 18-3 Heat Flow
En cylinder innehåller 0,50 mol av en monoatomisk
gas med temperaturen 310 K. När gasen expanderar
isotermt, från ursprungsvolymen 0,31 m3 till 0,45 m3,
utför gasen ett arbete. Hur stor mängd värme Q
måste tillföras gasen, för att temperaturen skall
kunna hållas konstant? ΔU = Q – W (18-3)
Gasen utför arbetet (W > 0)
W = NkT•ln(Vf/Vi) = nRT•ln(Vf / Vi) =
0,50 mol•8,31 J/(mol •K)•310K•ln(1,4516) = 480 J
Ändringen i den inre energin ΔU = 0, eftersom den
bara beror på temperaturen (U = 3NkT/2, 17-15)
Q = ΔU + W = 480 J
Conceptual Checkpoint 18-1 Ideal or Not?
Inre energin för en viss gas ökar då den
komprimeras isotermt. Är gasen ideal?
18-3 Thermal Processes
An adiabatic process is one in which no heat
flows into or out of the system. The adiabatic
P-V curve is similar to the isothermal one, but
is steeper. One way to ensure that a process is
adiabatic is to insulate the system.
Conceptual Checkpoint 18-2 Pressure versus Volume
(i)i är en isoterm. Vilken väg är den adiabatiska?
Vägen
Example 18-4 Work into Energy
När en viss gas komprimeras adiabatiskt så görs arbetet (på
gasen W<0) 640 J. Vad är ändringen i inre energin? ΔU = Q – W
18-3 Thermal Processes
Another way to ensure
that a process is
effectively adiabatic is
to have the volume
change occur very
quickly. In this case,
heat has no time to
flow in or out of the
system.
18-3 Thermal Processes
Here is a summary of the different types of
thermal processes:
18-4 Specific Heats for an Ideal Gas:
Constant Pressure, Constant Volume
Specific heats for ideal gases must be quoted
either at constant pressure or at constant
volume. For a constant-volume process,
18-4 Specific Heats for an Ideal Gas:
Constant Pressure, Constant Volume
At constant pressure,
Conceptual Checkpoint 18-3 Comparing Specific
Heats
Hur är stort är det molära specifika värmet Cv (vid
konstant volym), jämfört med det molära specifika
värmet Cp (vid konstant tryck)? > = < ?
Hint: Se på figurerna 18-12 och 18-13 (som finns
på de två föregående slides, eller i nödfall nästa)!
18-4 Specific Heats for an Ideal Gas:
Constant Pressure, Constant Volume
Both CV and CP can be calculated for a
monatomic ideal gas using the first law of
thermodynamics.
18-4 Specific Heats for an Ideal Gas: Constant
Pressure, Constant Volume
Både CV och CP kan beräknas för en enatomig ideal
gas genom att använda första huvudsatsen (18-3)
ΔU = Q – W
För en process vid konstant volym är W = 0, så att
Q(v) = ΔU = (17-15) = 3nRΔT/2 = (16-11)= nCvΔT
Cv = 3R/2
(18-6)
För en process vid konstant tryck är
W = P ΔV = (ideal gas) = nR ΔT
Då blir
Q(p) = ΔU + W = 3nR ΔT/2 + nR ΔT = nCpΔT
Cp = 5R/2
(18-7)
18-4 Specific Heats for an Ideal Gas:
Constant Pressure, Constant Volume
Although this calculation was done for an ideal,
monatomic gas, it works well for real gases.
Exercise 18-2
Beräknade värmet som behövs för att värma 0,200
mol av en enatomisk, ideal gas 5,00° C a) under
konstant volym och b) under konstant tryck.
För en process vid konstant volym är W = 0, så att
Q(v) = nCvΔT = (Cv = 3R/2) =
= 0,200 mol•1,5•8,31 J/(mol•K) •5,00 K = 12,5 J
För en process vid konstant tryck är
Q(p) = nCpΔT = (Cp = 5R/2) =
= 0,200 mol•2,5•8,31 J/(mol•K) •5,00 K = 20,8 J
18-4 Specific Heats for an Ideal Gas:
Constant Pressure, Constant Volume
The P-V curve for an adiabat is
given by
where
Example 18-5
Hot Air
Example 18-5 Hot Air
En behållare med ursprungsvolymen 0,0625 m3
innehåller 2,50 mol av en enatomig ideal gas med
temperaturen 315 K. Gasen sammanpressas
adiabatiskt till volymen 0,0350 m3. Vad blir då
gasens a) tryck b) temperatur?
Ideal gas, så PV = nRT gäller, således är
Pi=2,50 mol•8,31 J/(mol•K)•315 K/0,0625m3=104,7 kPa
Adiabatisk process gäller dvs PVγ = konstant
PiViγ = PfVfγ
Pf = 104,7 kPa (0,0625/0,0350)5/3 = 275,2 kPa
T=275,2 kPa•0,0350 m3/2,50 mol•8,31 J/(mol•K)=464 K
18-5 The Second Law of Thermodynamics
We observe that heat always flows
spontaneously from a warmer object to a
cooler one, although the opposite would not
violate the conservation of energy. This
direction of heat flow is one of the ways of
expressing the second law of
thermodynamics:
When objects of different temperatures are brought
into thermal contact, the spontaneous flow of heat
that results is always from the high temperature
object to the low temperature object. Spontaneous
heat flow never proceeds in the reverse direction.
18-6 Heat Engines and the Carnot Cycle
A heat engine is a device that converts heat into
work. A classic example is the steam engine.
Fuel heats the water; the vapor expands and
does work against the piston; the vapor
condenses back
into water again
and the cycle
repeats.
18-6 Heat Engines and the Carnot Cycle
All heat engines have:
• a high-temperature reservoir
• a low-temperature reservoir
• a cyclical engine
These are illustrated
schematically here.
18-6 Heat Engines and the Carnot Cycle
An amount of heat Qh is supplied from the hot
reservoir to the engine during each cycle. Of that
heat, some appears as work, and the rest, Qc, is
given off as waste heat to the cold reservoir.
The efficiency is the fraction of the heat
supplied to the engine that appears as work.
18-6 Heat Engines and the Carnot Cycle
The efficiency can also be written:
In order for the engine to run, there must
be a temperature difference; otherwise
heat will not be transferred.
Example 18-6
Heat into Work
Example 18-6 Heat into Work
En värmemaskin med verkningsgraden 24,0 % utför
1250 J arbete. Bestäm Qh och Qc.
Ekvation 18-12
e = W/Qh = (Qh – Qc)/Qh = 1 – Qc/Qh
Qh = W/0,24 = 5210 J (5208 J)
Qc = Qh(1 –e) = 3960 J (3958 J)
18-6 Heat Engines and the Carnot Cycle
The maximum-efficiency heat engine is
described in Carnot’s theorem:
If an engine operating between two constanttemperature reservoirs is to have maximum
efficiency, it must be an engine in which all processes
are reversible. In addition, all reversible engines
operating between the same two temperatures, Tc
and Th, have the same efficiency.
This is an idealization; no real engine can be
perfectly reversible.
18-6 Heat Engines and the Carnot Cycle
If the efficiency depends only on the two
temperatures, the ratio of the temperatures must
be the same as the ratio of the transferred heats.
Therefore, the maximum efficiency of a heat
engine can be written:
18-6 Heat Engines and the Carnot Cycle
The maximum work a heat engine can do is
then:
If the two reservoirs are at the same
temperature, the efficiency is zero; the
smaller the ratio of the cold temperature to
the hot temperature, the closer the efficiency
will be to 1.
Conceptual Checkpoint 18-4 Comparing
Efficiencies
Anta att en värmemaskin kan arbeta på två olika
sätt. I det ena processen arbeter den mellan
temperaturerna 400 K/200K och i det andra mellan
600 K/400K. Är verkningsgraden i den första
processen > = < än i det andra?
Ekvation 18-14
Wmax = emaxQh= (1 – Tc/Th )Qh
Active Example 18-2
Find the Temperature
Active Example 18-2 Find the Temperature
Om värmemaskinen i exemple 18-6 arbeter med
maximal effektivitet och dess kalla reservoar hålls
vid temperaturen 295 K, vad är då temperaturen på
den varma reservoaren?
Värmemaskinens verkningsgraden 24,0 % är
maximal. Ekvation 18-14 ger då
e = 1 – Tc/Th
Th = Tc/(1 – e) = 388 K
18-7 Refrigerators, Air Conditioners, and
Heat Pumps
While heat will flow spontaneously only from a
higher temperature to a lower one, it can be
made to flow the other way if work is done on
the system. Refrigerators, air conditioners,
and heat pumps all use work to transfer heat
from a cold object to a hot object.
Figure 18-17
Cooling and heating
devices
18-7 Refrigerators, Air Conditioners, and
Heat Pumps
If we compare the
heat engine and the
refrigerator, we see
that the refrigerator
is basically a heat
engine running
backwards – it uses
work to extract heat
from the cold
reservoir (the inside of the refrigerator) and
exhausts to the kitchen. Note that
- more heat is exhausted to the kitchen than is
removed from the refrigerator.
18-7 Refrigerators, Air Conditioners, and
Heat Pumps
An ideal refrigerator would remove the most
heat from the interior while requiring the
smallest amount of work. This ratio is called the
coefficient of performance, COP:
Typical refrigerators have COP values between
2 and 6. Bigger is better!
Exercise 18-3
Ett kylskåp har ett COP-värde av 2,5. Hur mycket
arbete måste tillföras kylskåpet för att
värmemängden 225 J skall föras bort?
Ekvation 18-15 ger
W = Qc/COP = 225 J/2,5 = 90 J
(dvs 225 J + 90 J värme i köket)
18-7 Refrigerators, Air Conditioners, and
Heat Pumps
An air conditioner is
essentially identical to a
refrigerator; the cold reservoir
is the interior of the house or
other space being cooled, and
the hot reservoir is outdoors.
Exhausting an air conditioner
within the house will result in
the house becoming warmer,
just as keeping the refrigerator
door open will result in the
kitchen becoming warmer.
Conceptual Checkpoint 18-5 Room Temperature
Tidsbrist har gjort att en ”air conditioner” tillfälligt
ställs på matsalsbordet i väntan på en placering på
sin rätta plats. Blir nu matsalen
varmare/kallare/ingen skillnad?
(Jämför med ”kylskåpstalet”)
18-7 Refrigerators, Air Conditioners, and
Heat Pumps
Finally, a heat pump is the
same as an air conditioner,
except with the reservoirs
reversed. Heat is removed
from the cold reservoir
outside, and exhausted
into the house, keeping it
warm. Note that the work
the pump does actually
contributes to the desired
result (a warmer house) in
this case.
Example 18-7
Pumping Heat
18-7 Refrigerators, Air Conditioners, and
Heat Pumps
In an ideal heat pump with two operating
temperatures (cold and hot), the Carnot relationship
holds; the work needed to add heat Qh to a room is:
The COP for a heat pump:
Example 18-7 Pumping Heat + Exercise 18-4
En ideal värmepump som uppfyller Carnotrelationen
W = Qh – Qc = Qh(1 - Qc/Qh) = Qh(1 – Tc/Th) = 275 J
används för att värma ett rum till 293 K. Hur mycket
värme tillförs rummet om utomhustemperaturen är
a) 273 k?
Qh = W/(1-Tc / Th) = 4,03 kJ (COP ≈ 15)
b) 263 K?
Qh = p.s.s. = 2,69 kJ (COP ≈ 10)
Exercise 18-4 Värmepump med COP ≡ Qh/W = 3,5
tillför 2,5 kJ. W = ?
(714 J)
18-8 Entropy
A reversible engine has the following relation
between the heat transferred and the reservoir
temperatures
(Carnotrelationen):
Rewriting,
This quantity, Q/T, is the same for both reservoirs,
and is defined as the change in entropy.
18-8 Entropy
For this definition to be valid, the heat transfer
must be reversible.
In a reversible heat engine, it can be shown
that the entropy does not change.
Example 18-8 Melts in Your Hand Beräkna entropiändringen då 0,125 kg is
av 0°C smälter. Anta att smältningen är reversibel.
Q = mL = 0,125 kg•335 kJ/kg
ΔS=Q/T=41875 J/273 K= 153 J/K
18-8 Entropy
A real engine will operate at a lower efficiency
than a reversible engine; this means that less
heat is converted to work. Therefore,
Any irreversible process results in an
increase of entropy.
18-8 Entropy
To generalize:
• The total entropy of the universe increases whenever
an irreversible process occurs.
• The total entropy of the universe is unchanged
whenever a reversible process occurs.
Since all real processes are irreversible, the
entropy of the universe continually increases. If
entropy decreases in a system due to work
being done on it, a greater increase in entropy
occurs outside the system.
Example 18-9 Entropy Is Not Conserved! Beräkna entropiändringen nedan
ΔSh = - Q/Th = - 1,82 J/K; ΔSc = Q/Tc = 3,44 J/K; ΔS = ΔSh + ΔSc = 1,62 J/K
18-8 Entropy
As the total entropy of the universe
increases, its ability to do work decreases.
The excess heat exhausted during an
irreversible process cannot be recovered;
doing that would require a decrease in
entropy, which is not possible.
Active Example 18-3 Find the Work
Active Example 18-3 Find the Work
En reversibel värmemaskin arbetar mellan
temperaturerna Th och Tc enligt figur. Bestäm W då
Qh= 1050 J.
W = Qh(1 – Tc/Th) = 494 J
Lägg märke till att ΔS = ΔSh + ΔSc = 0 (som väntat?!)
ΔSh = -1050 J/576 K = - 1,82 J/K
ΔSc = 556 J/305 K = 1,82 J/K
18-9 Order, Disorder, and Entropy
Entropy can be thought of as the increase in
disorder in the universe. In this diagram, the
end state is less ordered than the initial state –
the separation between low and high
temperature areas has been lost.
18-9 Order, Disorder, and Entropy
If we look at the ultimate fate of the universe in
light of the continual increase in entropy, we
might envision a future in which the entire
universe would have come to the same
temperature. At this point, it would no longer be
possible to do any work, nor would any type of
life be possible. This is referred to as the “heat
death” of the universe.
18-9 Order, Disorder, and Entropy
So if entropy is continually increasing, how is
life possible? How is it that species can evolve
into ever more complex forms? Doesn’t this
violate the second law of thermodynamics?
No – life and increasing complexity can exist
because they use energy to drive their
functioning. The overall entropy of the universe
is still increasing. When a living entity stops
using energy, it dies, and its entropy can
increase rather quickly.
18-10 The Third Law of Thermodynamics
Absolute zero is a temperature that an object
can get arbitrarily close to, but never attain.
Temperatures as low as 2.0 x 10-8 K have been
achieved in the laboratory, but absolute zero will
remain ever elusive – there is simply nowhere to
“put” that last little bit of energy.
This is the third law of thermodynamics:
It is impossible to lower the temperature of an object
to absolute zero in a finite number of steps.
Summary of Chapter 18
• When two objects have the same temperature,
they are in thermal equilibrium.
• The first law of thermodynamics is a statement
of energy conservation that includes heat.
•
• The internal energy of a system depends only
on its temperature, pressure, and volume.
• A quasi-static process is one in which the
system may be considered to be in equilibrium
at all times.
Summary of Chapter 18
• In a reversible process it is possible to return
the system and its surroundings to their initial
states.
• Irreversible processes cannot be undone.
• The work done during a process is equal to the
area under the curve in the PV plot.
• The work done at constant pressure is
• The work done at constant volume is zero.
• The work done in an isothermal expansion is
Summary of Chapter 18
• An adiabatic process is one where no heat
transfer occurs.
• The value of the specific heat depends on
whether it is at constant pressure or at constant
volume.
• Molar specific heat is defined by:
• For a monatomic gas at constant volume:
• For a monatomic gas at constant pressure:
Summary of Chapter 18
• In a PV plot,
is constant, where
• For a monatomic ideal gas,
• The spontaneous flow of heat between objects
in thermal equilibrium is always from the hotter
one to the colder one.
• A heat engine converts heat into work.
• Efficiency of a heat engine:
Summary of Chapter 18
• A reversible engine has the maximum possible
efficiency,
• The maximum possible work:
• Refrigerators, air conditioners, and heat pumps
use work to transfer heat from a cold region to a
hot region.
Summary of Chapter 18
• Coefficient of performance of a refrigerator:
• Work done by an ideal heat pump:
• Coefficient of performance for a heat pump:
Summary of Chapter 18
• Change of entropy during a reversible heat
exchange:
• Total entropy of the universe increases
whenever an irreversible process occurs; total
entropy is unchanged after an ideal reversible
process.
• Entropy is a measure of disorder.
• The heat death of the universe will occur when
everything is the same temperature and no more
work can be done.
Summary of Chapter 18
• It is impossible to lower the temperature of an
object to absolute zero in a finite number of
steps.