Transcript Slide 1

Kinks, Nodal Bilyaer Splitting, and
Interband Scattering in YBCO
Sergey V. Borisenko
“Self-organized Strongly Correlated Electron Systems”
29 May, 2006, Seillac, France
THANKS TO:
Alexander Kordyuk
Martin Knupfer
Andreas Koitzsch
Jörg Fink
Volodymyr Zabolotnyy
Bernd Büchner
Dmitriy Inosov
Jochen Geck
Roland Hübel
THANKS TO:
Bernhard Keimer, Chengtian Lin, Vladimir Hinkov
MPI Stuttgart
Yoichi Ando, Shimpei Ono, Seiki Komiya
CRIEPI Tokyo
Andreas Erb
WMI Garching
Helmut Berger
EPFL Lausanne
Rolf Follath
BESSY
Sorin Chiuzbaian, Luc Patthey
SLS
Andrey Chubukov
U Wisconsin
Ilya Eremin
MPI Dresden
Money
DFG (Forschergruppe 538)
BMBF ("Highest resolution ARPES")
EU (LSF Programme)
Angle-Resolved Photoemission Spectroscopy
LEED patterns
Pb-BSCCO
YBCO
LSCO
Recipe
Energy
t'/t~ -0.3
N
Y

A M

X

Bare band structure


w
Auger decay
W
w
Bosons
Energy
Self-energy
Energy
Agreement with experiment
B
A
C
A
B
С
Energy
Inosov, Zabolotnyy et al.
G wk)
INS
RAMAN
STM
LEED patterns
Pb-BSCCO
YBCO
LSCO
Fermi surface of YBCO
O. K. Andersen et al.
1.5
Chain states
1.0
ky, Å
-1
0.5
0.0
-0.5
-1.0
-1.5
-2.5
-2.0
-1.5
-1.0
-0.5
-1
kx, Å
0.0
0.5
1.0
1.5
Fermi surface of YBCO
1.5
1.0
ky, Å
-1
0.5
0.0
-0.5
-1.0
-1.5
-2.5
-2.0
-1.5
-1.0
-0.5
-1
kx, Å
0.0
0.5
1.0
1.5
Electronic structure of YBCO
Electronic structure of YBCO
Nodal bilayer splitting
Some of the previous work on YBCO
Chain
S
Г
Y
Chain/SS
X
S
antibonding
bonding
K. Gofron et al., J. Phys. Chem. Solids 54,
1193 (1993)
?
M. C. Schabel et al., Phys. Rev. B 57, 6090 (1998)
SC peak
“hump”
Surf. State
D. H. Lu et al., Phys Rev. Lett 86, 4370 (2001)
D. H. Lu et al., Phys Rev. Lett 86, 4370 (2001)
Chain
YBCO: Gap? Doping level?
~N
~A
YBCO 6.85
Electronic structure of YBCO
19 meV
50.7
50.7
50.6
50.6
50.5
50.5
50.4
50.4
25
eV
eV
50.3
50.3
50.2
50.2
50.1
50.1
50.0
50.0
15
deg
-2
0
2
4
-2
0
2
4
10
deg
5
50.7
50.7
50.6
50.6
50.5
50.5
50.4
50.4
45.6
eV
eV
deg
50.2
50.1
50.1
50.0
deg
-2
50.2
0
50.3
2
50.3
4
-2
45.4
eV
0
45.2
2
45.0
4
x10
3
20
50.0
Temperature dependence.
24K
YBa2Cu3O6.6
eV
0.0
Temperature:
24K
53K
69K
87K
2.0
Intensity, arb. u.
0.2
0.4
0
deg
5
30K
0.0
1.5
antibonding SC
1.0
eV
0.5
antibonding normal
0.2
0.0
0.4
0
deg
-0.05
5
0.00
0.05
0.10
Binding energy, eV
52K
70K
88K
0.0
eV
0.0
eV
0.0
eV
0.0
0.20
eV
34K
0.15
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0
deg
5
0
deg
5
0
deg
5
0
deg
5
V. Zabolotnyy et al.
Superconducting component
antibonding
bonding
-0.10
-0.1
-0.1
BB N
-0.05
0.0
0.1
0.2
Binding Energy, eV
0.2
Binding Energy, eV
0.1
0.00
0.05
sum
0.0
Binding Energy, eV
overdoped
AB N
0.10
0.15
0.3
-0.2
-0.1
0.0
0.2
1/A
1/A
0.1
0.20
-0.2
-0.1
0.0
0.1
0.2
-0.2
-0.1
0.0
0.1
0.2
0.3
1/A
0.2
0.00
0.05
eV
0.2
0.1
Binding Energy, eV
0.1
experiment
0.0
Binding Energy, eV
0.10
0.15
0.20
-0.2
0.2
-0.2
-0.1
0.0
0.1
0.2
-0.2
-0.1
0.0
0.1
1/A
0.0
0.3
0.3
0.2
superconducting
AB SC
0.0
-0.10
-0.05
-0.1
-0.1
BB SC
0.25
0.25
kx, 1/Å
1/A
// Model: =0.5*(ABSC + ABN) + BBSC + BBN + Background
V. Zabolotnyy et al.
d=0.30
e-
e-
d=0.16
d=0.16
d=0.02
d=0.16
d=0.30
Edwards et al, Phys. Rev. Lett. 70, 2967 (1992)
~12 A
-2
POL=12.5
4
-2
POL=13
0.10
0.30
0.30
0.30
0.40
0.40
0.20
2
0.40
eV
0
0.00
4
0.30
0.20
2
0.40
eV
0.10
0.00
0.00
POL=10.0
0
0
2
4
POL=16
0.10
-2
0.20
4
0.00
2
deg
0.10
0
0.20
-2
Momentum, ky
deg
deg
eV
deg
eV
Momentum, kx
Momentum dependence of the
renormalization in YBCO-6.6
V. Zabolotnyy et al.
Superconducting gap: anisotropy
-0.05
pol=10
LEG=2mev
pol=11
LEG=8meV
-0.05
-0.05
pol=12
LEG=15meV
-0.05
pol=13
LEG=17meV
-0.05
0.00
0.05
0.05
0.05
0.05
0.05
0.10
0.10
0.10
0.10
0.10
eV
0.00
eV
0.00
eV
0.00
eV
0.00
0.15
0.15
0.15
0.15
0.15
0.20
0.20
0.20
0.20
0.20
0.25
0.25
0.25
0.25
0.25
-2
0
2
deg
4
-2
0
2
deg
4
-2
0
2
deg
4
-2
0
2
deg
4
pol=14
LEG=19meV
-2
0
2
deg
4
25
20
15
Leading edge
POL
BE
10.4
9 meV
11.5
13 meV
13.0
16 meV
15.0
13-15meV
10
5
0
-0.1
0.0
0.1
0.2
eV
0.3
0.4
V. Zabolotnyy et al.
Momentum dependence in Ca-YBCO
LEG=2mev
LEG=8meV
LEG=15meV
LEG=17meV
0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.2
Momentum, ky
0.2
0.0
0.2
kx, 1/Å
eV
0.0
eV
eV
1-4
eV
Momentum, kx
200510 SLS\Ca-YBCO
0.2
0.0
0.2
kx, 1/Å
0.2
0.0
0.2
kx, 1/Å
0.0
0.2
kx, 1/Å
Experiment
Model
-0.2
-0.1
-0.2
-0.1
-0.2
0.0
eV
-0.1
0.0
eV
50
0.0
eV
0.0
eV
Ren. constant, % λmax
100
-0.1
-0.2
0
0.0
0.5
Ky, π/a
1.0
V. Zabolotnyy et al.
Temperature dependence in Ca-YBCO.
2005 10 SLS\Ca-YBCO
files 014-21
-0.05
0.2
-0.05
T=55K
12 meV
-0.05
-0.05
T=72K
7 meV
0.00
0.00
0.00
0.05
0.05
0.05
0.05
0.10
0.10
0.10
0.10
T=94K
5 meV
0.00
eV
0.1
eV
eV
0.0
T=36K
13 meV
eV
T=17K
eV
-0.1
0.15
0.15
0.15
0.15
0.20
0.20
0.20
0.20
0.25
0.25
0.25
0.25
0.3
-2
0
2
deg
4
-2
0
2
deg
4
-2
0
2
deg
4
-2
0
2
deg
4
-2
0
2
deg
4
V. Zabolotnyy et al.
Kinks in YBCO: nodal direction
0.2
0.2
0.1
0.1
0.1
0.0
0.0
0.0
eV
eV
eV
-0.1
-0.1
-0.1
-0.2
-0.2
-0.2
-0.3
-0.3
A-1
A-1
hn=50eV
hn=53eV
0.2
0.4
0.6
0.2
0.4
0.6
0.2
0.4
0.6
-0.3
A-1
hn=55eV
PRL 06 c
Kinks in YBCO: nodal direction
-0.05
0.10
20
-0.20
15
MDC
x10
3
-0.15
10
0.08
30
0.06
-0.25
0.04
5
-0.30
EDC
20
3
-0.10
x10
MDC HWHM (Å-1)
b
Energy (eV)
a 0.00
0
10
0
0.2
0.4
0.6
0.02
-0.35
0.44 0.46 0.48 0.50 0.52 0.54
Momentum (Å-1)
-0.2
-0.3
0.0
-0.2
-0.1
0.0
Energy (eV)
0.2 0.3 0.4 0.5 0.6
Momentum (Å-1)
PRL 06 c
Kinks in YBCO as a function of doping
PRL 06 c
P. Bourges, B. Keimer et al.
YBCO 30 K
Kordyuk et al. Cond-mat/0510760
Evidence for the strong
interband scattering in YBCO
MDC's HWHM (Å -1)
Energy (eV)
0.0
-0.2
-0.4
0.4
0.3
0.4
0.5
0.6
0.6
Momentum (Å )
-1
antibonding
bonding
0.06
0.04
0.02
-0.12
-0.08
-0.04
0.00
Energy (eV)
PRL 06 b, PRL 06 c
Conclusions
Methodological conclusions:
ARPES spectra of YBCO consist of two components: a strongly overdoped one (top bilayer) and
a nominally doped one (second bilayer)
There are no other misterious „surface states“
It is possible to enhance the nominally doped component (photon energy, polarization, geometry, Ca-doping)
Physical conclusions:
Fermi surface of YBCO is consistent with LDA predictions (bilayer splitting, chain states, shape, topology)
Renormalization below Tc is strong and anisotropic
Superconducting gap has the absolute values comparable to BSCCO and similar anisotropy
Kink energy is doping dependent and tracks that of the magnetic excitations‘ spectrum
Strong interband scattering, as in BSCCO, indicates that the scattering mediators are the spin fluctuations
Thanks to:
ARPES of HTSC, Leibniz-IFW Dresden:
Alexander Kordyuk, Andreas Koitzsch, Vladimir Zabolotnyy, Jochen Geck,
Dmitriy Inosov, Roland Hübel, Jörg Fink, Martin Knupfer, Bernd Büchner
Synchrotron Light
Rolf Follath
Luc Patthey
BESSY Berlin
SLS Villigen
Collaboration
Bernhard Keimer, Vladimir Hinkov, Chengtian Lin
Yoichi Ando, Shimpei Ono, Seiki Komiya
Andrey Chubukov
Ilya Eremin
Andreas Erb
Helmut Berger
Funding
DFG (Forschergruppe 538), EU (LSF Programme)
MPI Stuttgart
CRIEPI Tokyo
U Wisconsin
MPI Dresden
WMI Garching
EPFL Lausanne