Status for teknologiutvikling – CO2

Download Report

Transcript Status for teknologiutvikling – CO2

Status for teknologiutvikling –
CO2-fangst fra kraftverk
Olav Bolland
Professor ved Norges Teknisk-Naturvitenskapelige Universitet –
NTNU
Leder av Gassteknisk Senter NTNU – SINTEF
EnergiRikekonferansen 2008
5. august, 2008
Haugesund
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
1
NTNU & SINTEF: CCS
§ Aktivitet siden 1986
§ Årlig FoU-budsjett innen CCS på 11 million Euro
– Nasjonale prosjekter 60%, EU-prosjekter
40%
§ Europas største FoU-prosjekt innen CCS –
BIGCO2
§ NTNU & SINTEF største aktør innen EUs CCSprosjektportefølje.
§ Omfattende nettverk med over 40 industrielle
partnere i samarbeidsprosjekter
§ Samarbeid med universiteter; Tsinghua, MIT,
Regina, Austin, ETH, Stuttgart
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
2
Emission of CO2
Emissions
[Million tonnes CO2/yr]
IEA, 2006, World Energy Outlook
Power generation
Industry
Transport
Residential and services**
Other***
Total
1990
2004
2004 %
2010
2015
2030
2030 %
6955
4474
3885
3353
1796
20463
10587
4742
5289
3297
2165
26079
40.6 %
18.2 %
20.3 %
12.6 %
8.3 %
100 %
12818
5679
5900
3473
2396
30367
14209
6213
6543
3815
2552
33333
17680
7255
8246
4298
2942
40420
43.7 %
17.9 %
20.4 %
10.6 %
7.3 %
100 %
20042030*
2.0 %
1.6 %
1.7 %
1.0 %
1.2 %
1.7 %
* Average annual growth rate
** Includes agriculture and public sector
*** Includes international bunkers, other transformation and non-energy use
IEA predicts:
CO2 emission growth rate 1.7%/y
Increase 2004-2030: 26  40 Gt CO2/yr  =550 M
of which the increase comes from:
Power generation ≈50% = 7.1 Gt CO2/yr  =2
Transport 21%
Industry 18%
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
3
Oljen tar snart slutt, vel…..
55
50
Utslipp av CO2 ved
produksjon av
brensel
Reserver
45
oljeskifer
EOR = Enhanced Oil Recovery
GTL = Gas To Liquid
CTL = Coal To Liquid
Ressurser
40
35
kull-til-olje CTL
30
25
20
oljesand
og tungolje
15
EOR
forbrukt10
per 2007
Gass-til-olje GTL
konv.
olje
Based on Brandt and Farrell, Scraping the bottom of the barrel:
Greenhouse gas emission consequences of a transition to low-quality
and synthetic petroleum resources, Climate Change, 2007
5
30 år
0
-1000
1000
3000
5000
7000
9000
11000
13000
15000
17000
19000
Kummulativ produksjon av væskeformige brensler [Gbbl=milliarder fat olje]
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
4
Oil sand – Ft. McMurray, Canada
Foto: Olav Bolland
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
5
Hvordan forholde seg til
global oppvarming?
Redusere drivhuseffekten
Mottiltak
Fjerne CO2 fra
atmosfæren
Redusere behov
Dempe
virkning
Biologisk Gjødsling Spre støv/
fiksering, av havene aerosols i
biomasse
atmosfæren
Forbedret
virkningsgrad
Forbruk
Tilpassing
Direkte reduksjon
Rensing
punktutslipp
Overgang til andre
energikilder
Kraft-& Under- HavLavere Kjerne- Fornyenergijordisk depon- C/Hkraft bar
forsyning lagring ering
forhold
energi
Akviferer Oljefelt
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Gassfelt
6
N₂/O₂
Coal, Oil, Natural Gas, Biomass
Post-combustion
Power
plant
CO₂
CO₂
separation
CO₂
Gasification
CO/H₂
H₂
CO₂
Shift
CO₂ separation
Reforming
CO/H₂
N₂/O₂
CO₂ compression
& conditioning
plant
Pre-combustion
Power
plant
CO₂
Oxy-combustion
O₂
Air
H₂ Power
N₂
Air separation
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
7
Uttynning av CO2 - Postcombustion
H2O; 8.3 %
H2O; 8.1 %
Ar; 0.9 %
Ar; 0.2 %
O2; 3.2 %
O2; 12.7 %
CO2; 14.1 %
CO2; 3.8 %
Post-combustion
coal
Post-combustion
natural gas
N2; 74.5 %
N2; 74.2 %
Pressure  1 atm
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
8
Post-combustion suppliers - 1
§ Fluor Econamine FG Plus Process
– 30wt% MEA + inhibitors for oxidative degradation and
corrosion
– 23 commercial plants, of which 9 plants capture more than
60 ton/day (22 kton/year), 7 are still in operation
– Lubbock, Texas, 1982-86, capture from gas combustion,
400 kton/year for EOR purposes
– Bellingham, MA-USA, capture from GT exhaust, 122
kton/year (shutdown in 2005)
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
9
Post-combustion suppliers - 2
§ Kerr-McGee/ABB Lummus
– 15-20%wt MEA without inhibitors
– North American Chemical Company in Troy, Ca, coal flue
gas, 290 kton/year, operating since 1979
– 320 MW coal fired plant at Applied Energy System,
Oklahoma, USA , 73 kton/year, since 1991
– Soda Ash Botswana in Sue Pan, Botswana, 110 kton/year,
since 1991
– 180 MW Warrior Run coal fired power plant in Maryland,
USA, 55 kton/year, since 1999
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
10
Post-combustion suppliers - 3
§ The Mitsubishi Heavy Industries KM-CDR Process
– KS-1, hindered amine with possibly a promotor
– Petronas plant, Malaysia, capture from steam reformer
syngas, 73 kton/year for fertilizer production, operating
since 1999
– Fukuoka, Japan, capture from natural gas/oil fired boilers,
120 kton/year
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
11
Post-combustion technology
developers
§ Cansolv
– Amine DC101, based on tertiary amines, and probably includes
a promoter to yield sufficient absorption rates to be used for
low pressure
§ Alstom
– Chilled ammonia process – using aqueous NH3 in a
absorption/desorption process, NH3 mainly present as ammonia
carbonate and bicarbonate
§ Aker Clean Carbon Just Catch process
– Working with a number of other companies to get in position as
EPC contractor for post-combustion plants – claims to have a
low cost concept
§ HTC Purenergy/Bechtel
– PSR solvent, process design
§ BASF
– Working on development of activated (Piperazine) MDEA for
CO2 capture from low-pressure gases
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
12
Post-combustion trends
§ Amine degradation, oxidation, corrosion
(SOx, COS, C2S, NOx, O2, fly ash)
§ Reduction of energy consumption, < 4
MJ/kg CO2
§ Process optimisation (split flow, absorber
intercooling)
§ New solvents or solvent mixtures
§ Emission to air
§ Membranes at high-pressure
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
13
N₂/O₂
Coal, Oil, Natural Gas, Biomass
Post-combustion
Power
plant
CO₂
CO₂
separation
CO₂
Gasification
CO/H₂
H₂
CO₂
Shift
CO₂ separation
Reforming
CO/H₂
N₂/O₂
CO₂ compression
& conditioning
plant
Pre-combustion
Power
plant
CO₂
Oxy-combustion
O₂
Air
H₂ Power
N₂
Air separation
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
14
Pre-combustion - principle
Split the CxHy-molecules into H2 and
CO2
Transfer heating value from CxHy to
H2
Separate CO2 from H2
H2
H2
CO
CO
Coal
Oil
Gasifier
Natural Reformer
gas
2
Shift
Oxidizer
H2O
O2
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
CO2
capture
CO
2
15
H2
to
combustion
IGCC without CO2 capture
Integrated Gasification Combined Cycle
Quench
water
Particulate
removal
Quench/
heat
recovery
Recovered
heat
Sulfur
removal
H2 S
Raw
syngas
Coal feed
Gasifier
O2
Air
Separation
Unit
Hydrogen-rich gas
N2
Recovered heat
HRSG
Compressed air
GT
ST
Air
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Generator
16
IGCC with CO2 capture
Integrated Gasification Combined Cycle
Quench
water
Particulate
removal
Quench/
heat
recovery
Recovered
heat
Shift
reaction
Sulfur
removal
CO2 capture
CO2
H2 S
Raw
syngas
Steam
Coal feed
Gasifier
O2
Air
Separation
Unit
CO2
storage
Hydrogen rich gas
N2
Recovered heat
HRSG
Compressed air
GT
ST
Air
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Generator
17
Co-generation of power and
hydrogen with CO2 capture
CO2
NG
Reforming
WGS
CO2 capture
Steam
Water
Air
Nitrogen
Heat
NG
Combined
Cycle
PSA
Pure H2
Fuel - ’Low-quality’ H2
Exhaust
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
18
Uttynning av CO2 - Precombustion
CO; 2.2 %
CO; 0.5 %
Pre-combustion
natural gas,
air-blown reforming
N2; 34.6 %
N2; 2.5 %
Pre-combustion IGCC
CO2; 38.3 %
H2; 46.8 %
H2; 56.1 %
Ar; 0.5 %
H2O; 0.1 %
CH4; 0.2 %
SO2;
CO2; 17.4 %
Ar; 0.4 %
CH4; 0.1 %
Pressure  15-60 atm
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
19
H2O; 0.2 %
Integrating pre-combustion
steps
Fuel
H2
CO
H2O
Gasifier
Reformer
H2
CO2
Water
gas-shift
(WGS)
CO2
capture
H2
CO2
O2 Q
O2 Q
Fuel+H2O
CH4  H2O
CO  H2O
Membrane
Q
Sweep gas +H2
CO  3H2
H2
Q
O2 Q
CH 4  1 O2
2
CO  2H 2
CO2
H2  CO2
H2 Q
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Sweep gas, e.g.
H2O, N2, air
H2
20
Fuel
Gasifier
Reformer
H2
CO
H2O
H2
CO2
Water
gas-shift
(WGS)
CO2
capture
CO2
O2 Q
Fuel+H2O
CH4  H2O
O2 Q
CO  3H2
CO  H2O
O2 Q
CH 4  1 O2
2
CO  2H 2
H2
H2  CO2
CO2  sorbent  sorbent  CO2
sorbent  CO2
Q
Sorbent
Regeneration
of sorbent
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
CO2
21
H2
N₂/O₂
Coal, Oil, Natural Gas, Biomass
Post-combustion
Power
plant
CO₂
CO₂
separation
CO₂
Gasification
CO/H₂
H₂
CO₂
Shift
CO₂ separation
Reforming
CO/H₂
N₂/O₂
CO₂ compression
& conditioning
plant
Pre-combustion
Power
plant
CO₂
Oxy-combustion
O₂
Air
H₂ Power
N₂
Air separation
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
22
Oxy-combustion – 30 MW thermal, lignite/brown-coal
Vattenfall demo in Schwarze
Pumpe
Source: Jordal et al. 2004
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
23
Oxy-combustion - natural gas
* CH4, CO, H2, etc.
79 mol-% CO2
13 mol-% H2O
5 mol-% Ar
4 mol-% N2
0 mol-% O2
Pressurized
oxygen (95 %)
Condense
r
0.048 bar
H2 O
1425 C
PR=40
Steam
turbine
GT
Generator
Combustor
O2
Oxygen
Crude
Fuel
Fuel
Processing
Plant
Fuel*
CO2 to
compression
Gas Generator
CO2
CO2
HP
IP
Coal, Refinery
Residues, or
Biomass
CO2
Recycle Water
Excess Water
1400 C
1bar
642 C
Feed Pump
180 bar
567 C
160 C
LPT
HTT
High Temperature Turbine
HRSG
Heat Recovery Steam Generator
LPT
Low Pressure Turbine
C1 - C3
CO2 Compressors
HPT
High Pressure Turbine
Deaerator
HRSG
0.25 bar
C2
CO2
CO2
CO2
C1
Condenser
Water
water
Carbon
Dioxide
Recovery
Direct
Sales
Condenser
C3
HPT
Electrical
Generator
Steam/CO2 (~90/10 % vol)
HTT
steam
steam
LP
Multi-stage Turbines
Heat
Recovery
Gas or
Oil
40 bar
Fuel
(syngas)
Air
Separation
Plant
88 mol-% CO2
5 mol-% Ar
4 mol-% N2
2 mol-% H2 O
0 mol-% O2
 88 % recycle (mass basis)
Reheater
Air
Condenser
1 bar
HRSG
NG
(14.67 kg/s)
Nitrogen
Cond. P.
H2O
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
24
EOR, ECBM,
or Sequestration
Oxy-combustion med høy-temperatur
membran
Source: Sven Gunnar Sundkvist, Oct. 2003
l
High-temperature ceramic materials for gas
separation
l
l
Potential for high efficiency
Durability must be better
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
25
Chemical Looping Combustion (CLC)
C
Air
Metal
Fuel
Metal
oxidation
Oxygen
depleted air
14% O2
T
Metal oxide
Metal oxide
reduction CO2 + H2O
T
Cooling
CO2
and H2O
condensation Compression
and storage
H2O
Reduction
CH4 ( g)  4MeO(s) 
 CO2 ( g)  2H2O(g)  4Me(s)
Oxidation
Me(s)  1/2O2( g) 
 MeO( s)
MeO=NiO supported on NiAl2O4
Other alternatives: Cu, Fe, Mg
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
26
Uttynning av CO2 oxycombustion
N2; 3.2 %
H2O; 16.9 %
SO2; 0.3 %
H2O; 14.3 %
Ar; 4.8 %
N2; 13.5 %
Ar; 1.9 %
O2; 2.0 %
O2; 4.9 %
CO2; 75.7 %
CO2; 62.5 %
Oxy-combustion
natural gas
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Oxy-combustion
coal
27
Technology
status
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
28
Commercially available
technology ?
§ Commerical:
q Capture of CO2 from natural gas and syngas
q Post-combustion capture from flue gas of natural
gas and coal fired systems with amine
absorption
Ø a number of plants exists
Ø suppliers able to give commercial
guarantees (though limited)
Ø set-order-to-operation (power plants): 3
years
§ Close-to-commercial:
q Integrated Gasification Combined Cycles (IGCC)
q Integrated Reforming Combined Cycle (IRCC)
Ø Technology
components mature/well-proven
Gassteknisk Senter NTNU – SINTEF
29
Olav Bolland
Ø Gas turbines burning H -rich fuel not quite
Technology status
CO2 capture in power plants
High
Medium
-high
Medium
-low
Low
Commercial
readiness
Natural gas
Improvement
potential
Post-combustion
Pre-combustion
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Oxy-combustion
30
Technology status
CO2 capture in power plants
High
Medium
-high
Medium
-low
Low
Commercial
readiness
Coal
Improvement
potential
Commercial
readiness
Natural gas
Improvement
potential
Post-combustion
Pre-combustion
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
Oxy-combustion
31
Kostnader for gasskraft
som funksjon av gasspris
Driftstid 8000 timer per år, virkningsgrad 58%, CO2 kostnad
25 €/tonn
70
øre/kWhel
60
50
CO2
40
Invest.
30
Drift&Vedl
Brensel
20
10
0
1
1,5
2
Gasspris
2,5
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
3 kr/Sm3
32
Kostnader for kullkraft
som funksjon av kullpris
Driftstid 8000 timer per år, virkningsgrad 46%, CO2 kostnad 25
€/tonn
70
øre/kWhel
1 Euro= 8 kr
60
50
CO2
40
Invest.
30
Drift&Vedl
Brensel
20
10
0
30
40
50
60
70
80
90
100 €/tonn
Kullpris
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
33
Takk!
Gassteknisk Senter NTNU – SINTEF
Olav Bolland
34