Transcript Elements

Passive Elements and Phasor Diagrams

Resistor

i R + v -

v

Ri

V = R I v i I V

Inductor

v i i L + v -

Capacitor

v

v

L di dt

V = jwL I V I i i C + v I

i

C dv dt

I = jwC V ELEC 371 Three-phase systems 1 V Industrial Power Systems Salvador Acevedo

Ideal Transformer

i1 + v1 N1:N2 i2 + v2 -

a

v

1

v

2 

i

2

i

1  N1 N2

a

 V1  V2 I2 I1  N1 N2 Transformer feeding load: I1 I2 + V1 + V2 V2 = V1/a I2 = V2/Z I1= I2/a Z V2 V1 Assuming a RL load connected to secondary and ideal source to primary I1 I2 ELEC 371 Three-phase systems 2 Industrial Power Systems Salvador Acevedo

Two Winding Transformer Model

+ i1  The linear equivalent model of a real transformer consists of an ideal transformer and some passive elements i2 + v1 v2 N1:N2 ELEC 371 Three-phase systems 3 Industrial Power Systems Salvador Acevedo

AC Generators and Motors

 AC synchronous generator  Single-phase equivalent  AC synchronous motor  Single-phase equivalent  AC induction motor (rarely used as generator) ELEC 371 Three-phase systems 4 Industrial Power Systems Salvador Acevedo

Steady-state Solution

In sinusoidal steady-state a circuit may be solved using phasors R I vs + VS jwL  i VS = R I + jwL I VS = (R + jwL) I VS = (R + jX) I VS = Z I I = I  VS Z V max

Z

   0 I  I max    0 p 2p Ix=I cos  VS   I Iy=I sin  Rectangular form Polar form

I

I = Ix + j Iy = Imax   From rectangular form to polar form: I =   Ix 2 + Iy tan  1  

Iy Ix

2   Magnitude Angle or phase From polar form to rectangular form: Ix Iy   Icos Isin   Real part Reactive or imaginary part ELEC 371 Three-phase systems 5 Industrial Power Systems Salvador Acevedo

Single-phase Power Definitions

i(t) = Im sin (wt+  i) amps + v(t) = Vm sin(wt+  v) volts Load: any R,L,C combination w=2 p f w: angular frequency in rad/sec f: frequency in Hz Instantaneous power    V m  1 2 V I m m  cos( 

v

sin

wt

 

v

 I m sin(

wt

 

i

)  cos( 2

wt

 

v

 

i

)   

i

)  Average Power (or REAL POWER) P  1

T

0

T

dt

 1 2 V I m m cos   V rms I rms cos  Apparent Power S = V rms I rms Power Factor pf  REAL POWER APPARENT POWER 

P S

For this circuit, the power factor is pf = V rms I rms cos   cos  V rms I rms ELEC 371 Three-phase systems 6 Industrial Power Systems Salvador Acevedo

Power Triangle

Real Power Reactive Power S  P=Scos  Ssin  =Q P = S cos  = V I cos  watts Q = S sin   V I sin  vars Complex Power S = S    P + j Q S = VI cos  + jVIsin  If  =  v  i and assuming a reference  v then  =  i therefore     i i ) + jIsin(  i ) - jIsin(  i )  )  S  V I * = 0 The magnitude is called Apparent Power: S = VI volt - amperes (VA) ELEC 371 Three-phase systems 7 Industrial Power Systems Salvador Acevedo

Power Consumption by Passive Elements

Impedance: Z = R + jX = Z    Resistive Load Z = R = R  0 o P = VI cos0 o Q = VI sin 0 o = 0 vars 2 / R A resistor absorbs P watts Purely Inductive Load Z = jwL = jX L P  VI cos(90 o )  X = 0 L  90 o watts Q = VI sin(90 o ) L = V 2 / X L An inductor absorbs Q var

s

Purely Capacitive Load Z = 1 jwC = -jX

C

 X C   P  VI cos(-90 o ) = 0 90 o watts Q = VI sin(-90 o ) L = -V 2 / X L var

s

A capacitor absorbs negative Q. It supplies Q.

ELEC 371 Three-phase systems 8 Industrial Power Systems Salvador Acevedo

Advantages of Three-phase Systems

 Creation of the three-phase induction motor Three-phase induction motor Single-phase induction motor Starting torque yes Steady state torque Constant no needs auxiliary starting circuitry Oscillating causing vibration + v  Efficient transmission of electric power  3 times the power than a single-phase circuit by adding an extra cable i ia va Single-phase Load vb ib Three-phase Load ic vc p = vi p = va ia + vb ib + vc ic  Savings in magnetic core when constructing  Transformers  Generators ELEC 371 Three-phase systems 9 Industrial Power Systems Salvador Acevedo

Three-phase Voltages

va vb vc va(t) = Vm sin wt vb(t) = Vm sin (wt - 2 p /3) = Vm sin (wt - 120  ) vc(t) = Vm sin (wt - 4 p /3) = Vm sin (wt - 240  ) or vb(t) = Vm sin (wt + 2 p /3) = Vm sin (wt + 120  ) w = 2 p f w: angular frequency in rad/sec volts volts volts volts f : frequency in Hertz Vc 120  120  120  Va ELEC 371 Three-phase systems 10 Vb Industrial Power Systems Salvador Acevedo

Star Connection (Y)

 Y-connected Voltage Source c + a Vcn n + Van Vbn + b Line - to - neutral voltages Van, Vbn, Vcn.

(phase voltages for Y - connection) same magnitude: V P V P  Van  Vbn  Vcn ELEC 371 Three-phase systems 11 Line - to - line voltages Vab, Vbc, Vca same magnitude: V LL Vab = Van - Vbn V = 3 V P Industrial Power Systems Salvador Acevedo

Delta Connection (

D

)

 D -connected Voltage Source Vca c + Vbc + a b + Vab Line - to - line voltages Vab, Vbc, Vca.

same magnitude: V LL  V P Phase currents Iab, Ibc, Ica.

same magnitude: I P Line currents Ia, Ib, Ic.

same magnitude: I L P ELEC 371 Three-phase systems 12 Industrial Power Systems Salvador Acevedo

Y-connected Load

c + a Vcn n + Van Vbn + b Ia ia Ic ia Za Zc n' Zb Ib ia

Balanced case: Za = Zb = Zc = Z Ia + Ib + Ic = 0 Ib = Ia

-120

Ic = Ia

- 240

 ELEC 371 Three-phase systems 13 Industrial Power Systems Salvador Acevedo

D

-connected Load

c + a Vcn n + Van Vbn + b Ia ia Ic ia Zca Zbc Zab Ib ia ELEC 371 Three-phase systems 14 Industrial Power Systems Salvador Acevedo

Y-

D

Equivalence

Za Zc n' Zb

Balanced case: Za = Zb = Zc = Zy

Zca Zbc Zab ELEC 371 Three-phase systems 15 Industrial Power Systems Salvador Acevedo

Power in Three-phase Circuits

Three - phase voltages and currents:

v a v b v c

  

V m V m V m

sin sin sin   

wt wt wt

 

v

v

v

 120  240   

i b i c i a

  

I m I m I m

sin sin  

wt wt

sin 

wt

 

i

 

v

i

120  240    The three - phase instantaneous power is:

p

3  

p

3  

V I m m

 

v i a a

 sin 

wt

v i b b

 

v

v i c c

wt

sin 

wt

i

 

v wt

 240  

v wt

120  

i wt

240   

v

120      This expression can easily be reduced to:

p

3   3 2

V I m m

cos   

v

i

 Since the instantaneous power does not change with the time, its average value equals its intantaneous value:

P

3 

P

3  

p

3   3

V I P P

cos  where:

V P

V m

2 ELEC 371 Three-phase systems 16

I P

I m

2   

i

Industrial Power Systems Salvador Acevedo

Three-phase Power

In a Y - connection

V LL

 3

V P I L

I P P

3   3 cos   3  

V LL

3  

I L

cos   3

V LL I L

cos 

V LL

V P I L

 3

I P P

3   3

V I P P

cos   3

V LL

 

I L

3   cos   3

V LL I L

cos  Regardless of the connection (for balanced systems), the average power (real power) is :

P

3   3

V LL I L

cos 

watts

Similarly, reactive power and apparent power expressions are: Q 3   3

V LL I L

sin  vars S 3   3

V LL I L VA

ELEC 371 Three-phase systems 17 Industrial Power Systems Salvador Acevedo

Three-phase Transformers

 Use of one three-phase transformer unit  Use of 3 single phase transformers to form a “Transformer Bank ELEC 371 Three-phase systems 18 Industrial Power Systems Salvador Acevedo

Physical Overview

ELEC 371 Three-phase systems 19 Industrial Power Systems Salvador Acevedo

A single-phase transformer  Example:10 KVA, 38.1KV/3.81KV

N1 : N2 + v1 + v2 a=N1/N2=V1/V2

Three-phase Transformers Connections

Y-Y; DD ; Y D ; D -Y Primary terminals Bank of 3 single-phase transformers Secondary terminals The Bank Transformation Ratio is defined as:

a'

line to line primary voltage line to line secondary voltage

ELEC 371 Three-phase systems 20 Industrial Power Systems Salvador Acevedo

A N1 + v1 N2 + v2 a Y-Y connection B N N1 N2 n b C N1 N2 c Ratings for Y-Y bank using 3 single-phase transformers: 3x10KVA = 30 KVA 66 KV / 6.6 KV ELEC 371 Three-phase systems 21 Industrial Power Systems Salvador Acevedo

A N1 + v1 N2 + v2 a DD connection B N1 N2 C N1 N2 b c Ratings for DD bank: 30 KVA; 38.1 KV / 3.81 KV ELEC 371 Three-phase systems 22 Industrial Power Systems Salvador Acevedo

A N1 + v1 N2 + v2 Y D connection B N N1 N2 C N1 N2 a b c Ratings for Y D bank: 30 KVA; 66 KV / 3.81 KV ELEC 371 Three-phase systems 23 Industrial Power Systems Salvador Acevedo

D -Y connection A B C N1 + v1 N2 + v2 a N1 N2 N1 N2 n b c Ratings for D -Y bank: 30 KVA; 38.1 KV / 6.6 KV ELEC 371 Three-phase systems 24 Industrial Power Systems Salvador Acevedo

Per unit modelling

 Power lines operate at kilovolts (KV) and kilowatts (KW) or megawatts (MW) To represent a voltage as a percent of a reference value, we first define this BASE VALUE.

Example: Base voltage: Vbase = 120 KV

Circuit voltage 108 KV 120 KV 126 KV 60 KV Percent of base value 90% 100% 105% 50% Per unit value 0.9

1.0

1.05

0.5

per unit quantity = actual quantity base quantity Voltage_1= 108 120  0 9 ** The percent value and the per unit value help the analyzer visualize how close the operating conditions are to their nominal values.

ELEC 371 Three-phase systems 25 Industrial Power Systems Salvador Acevedo

Defining bases

4 quantities are needed to model a network in per unit system: V: voltage V BASE I: S: Z: current power impedance I S Z BASE BASE BASE V pu S pu   V actual V base S actual S base I pu Z pu   I actual I base Z actual Z base Given two bases, the other two quantities are easily determined.

If base voltage and base power are known: V base  100 KV, S base  100 MVA then, base current and base impedance are: I base Z base = = S base V base V base I base I base Z base   1000  1000 A.

 100 Another way to express base impedance is:  2 Z base = V base  V base   V base I base S base S base  V base   Real power base and reactive power base are: P base Q base = S base = S base = 100 MW = 100 MVAR ELEC 371 Three-phase systems 26 Industrial Power Systems Salvador Acevedo

Three phase bases

In three-phase systems it is common to have data for the three-phase power and the line-to-line voltage.

S base 3 

V base

LL

  3

S base

 1  3

V base

LN

The base current and impedance for the three phase case are :

I base

  

S base

 3  3

V base

 3

LL

  

S base

 3  3

V base

LL Z base

  

V S base

 3

base

LL

3    2  3  

V base

LL S base

 3   2 In per unit, line to neutral voltage = line to line voltage V LN(pu) = V LL(pu) why?

With p.u. calculations, three-phase values of voltage, current and power can be used without undue anxiety about the result being a factor of

3 incorrect !!!

ELEC 371 Three-phase systems 27 Industrial Power Systems Salvador Acevedo

a b c

Example

The following data apply to a three-phase case: S base =300 MVA V base =100 KV (three-phase power) (line-to-line voltage) Three-phase load 270 MW 100 KV pf=0.8

Normally, we' d say: P =  I = P  270x10 6 3 (100x10 3 0 8  1948.5 A.

Using the per unit method: P = 270 300  V = 1.0 p.u.

p.u.

P = V I pf then P I = V pf   Single-phase equivalent: I=1.125 p.u.

This current is 12.5% higher than its base value!

To check: 1.125xIbase = (1.125)   300,000 3 100    x 1732  .

A.

ELEC 371 Three-phase systems 28

+

V=1 p.u.

-

Industrial Power Systems Salvador Acevedo

Transformers in per unit calculations

 With an ideal transformer 2400 V.

+ V1 + V2 4.33 + j 2.5 ohms High Voltage Bases S base1 = 5 KVA V base1 = 2400 V I base1 = 5000/2400=2.083 A Z base1 = 2400/2.083=1152  2400:120 V 5 KVA Low Voltage Bases S base2 = 5KVA V base2 = 120 V I base2 = 5000/120=41.667 A Z base2 = 120/41.667=2.88  From the circuit: V1=2400 V.

V2=V1/a=V1/20=120 V.

In per unit: V1=1.0 p.u.

V2=1.0 p.u.

+ 1.0

+ 1.0

The load in per unit is: Z=(5  30  )/Z base2 =1.7361  30  p.u.

The current in the circuit is: I=(1.0  0  / (1.7361  30  =0.576  -30  p.u.

The current in amperes is: Primary: Secondary: I1=0.576 x I base1 = 1.2 A.

I2=0.576 x I base2 = 24 A.

ELEC 371 Three-phase systems 29 Industrial Power Systems Salvador Acevedo

One line diagrams

 A one line diagram is a simplified representation of a multiphase-phase circuit.

GENERATOR TRANSFORMER Transmission line Transmission line Transmission line TRANSFORMER GENERATOR LOAD ELEC 371 Three-phase systems 30 Industrial Power Systems Salvador Acevedo

Nodal Analysis

Suppose the following diagram represents the single-phase equivalent of a three-phase system z13=j2 p.u.

z3=j2 p.u.

z1=j1 p.u.

z12=j0.5 p.u.

z23=j0.5 p.u.

V1= 1 p.u.

V3= -j1 p.u.

z2=10 p.u.

Finding Norton equivalents and representing impedances as admittances: y13=-j0.5 p.u.

1 y12=-j2 p.u.

2 y23=-j2 p.u.

3 I1= -j1 p.u.

y1=-j1 p.u.

y2=0.1 p.u.

y3=-j0.5 p.u.

I3= -0.5 p.u.

I 1 =y 1 V 1 + y 12 (V 1 -V 2 ) + y 13 (V 1 -V 3 ) 0 = y 12 (V 2 -V 1 ) + y 2 V 2 + y 23 (V 2 -V 3 ) I 3 =y 13 (V 3 -V 1 ) + y 23 (V 3 -V 2 ) + y 3 V 3 In matrix form:     y + y 12 - y - y 12 13 + y 13 y 12 - y 12 - y 23 23 y 13 - y 13 - y 23 + y 23 + y 3         V1  V2 V3      I1    0 I3         

j j j

2

j

2 

j

4

j

2

j

j

2

j

3         V1 V2 V3          - j1 0 - 0.5

    solving     V1 V2 V3          .

  .

    24  35 44       ELEC 371 Three-phase systems 31 Industrial Power Systems Salvador Acevedo

General form of the nodal analysis

The system of equations is repeated here to find a general solution technique:      y + y + y 13 - y - y 12 13 - y - y 12 23 23 - y - y 13 23 y + y + y 13 23 3           V1 V2 V3            I1 0 I3      or      Y 11 Y 21 Y 31 Y Y Y 12 22 32 Y Y Y 13 23 33           V1  V2 V3           J1 J2 J3      In general: N  j=1 y ij Y = -y ij ij

i

i

 1 2

N j

 1 2

i

j

 I i (from current sources flowing into the node)

i

N

Once the voltages are found, currents and powers are easily evaluated from the circuit. We have solved one of the phases of the three-phase system (e.g. phase ‘a’). Quantities for the other two phases are shifted 120 and 240 degrees under balanced conditions.

Actual quantities can be found by multiplying the per unit values by their corresponding bases.

ELEC 371 Three-phase systems 32 Industrial Power Systems Salvador Acevedo