Transcript Document

New Technologies for
Accelerators
- Advanced Accelerator Research Bob Siemann
March 19, 2003
• Introduction
• An Incomplete Survey
• Plasma Waves and The Afterburner
• A Laser Driven Linear Collider
• Conclusion
Science  Innovation
Particle Physics Discoveries
• 2 n’s
• J/
•W&Z
• top
Accelerator Innovations
• Phase focusing
• Klystron
• Strong focusing
• Colliding beams
• Superconducting magnets
• Superconducting RF
Innovation is Critical
The Livingston Curve
• Captures our history
• Expresses our aspirations
• But there is no guarantee
• Approaches that have become
too big, too expensive, … have
been supplanted - Vital for
advancing science
Accelerator Science & Technology
•
Evolution & Maturity
Underlying science & technology
Developing a design => parameter lists, etc
Optimization
Construction
Commissioning & operation
•
Advanced accelerator research = high gradient e+eacceleration
Advanced accelerator research is one aspect of
accelerator innovation
An Incomplete Survey
mm-wave
accelerator
fabricated by deep
x-ray lithography
Dielectric wakefield
accelerator – Two
beam experiment
R. Kustom et al, ANL
W. Gai et al, ANL
An Incomplete Survey
L. Schächter, Technion
Active medium
Wakefield
amplification by an
active medium
Amplified wake
Trigger bunch
Self modulated laser wakefield
acceleration
E > 100 MeV, G > 100 GeV/m
A. Ting et al, NRL
Relative # of electrons/MeV/Steradian
Accelerated
bunch
SM-LWFA electron energy spectrum
Shot 12 (10 kG)
Shot 26 (10 kG)
Shot 29 (5 kG)
Shot 33 (5 kG)
Shot 39 (2.5 kG)
Shot 40 (2.5 kG)
6
10
105
104
103
6
8 10
20
40 60 80100
Electron energy (in MeV)
200
An Incomplete Survey
Plasma Focusing of e+
beams
P. Chen et al, SLAC
300
0 uv Pellicle =43 µm
e-
Transport of an beam
through a 1.4 m long
plasma
 X DS OTR (µm)
250  =910-5 (m rad)
N
0=1.15m
200
150
100
50
P. Muggli et al, USC
0
0 51 60 cedFit.2 .g ra ph
-2
0
2
4
6
K*Lne1/2
8
10
12
UCLA
Advanced Accelerator Physics at SLAC
Beam-Driven Plasma Acceleration: E-157, E-162, E-164, E-164X
T. Katsouleas, S. Deng, S. Lee, P. Muggli, E. Oz
University of Southern California
B. Blue, C. E. Clayton, V. Decyk, C. Huang, D. Johnson, C. Joshi, J.-N. Leboeuf, K. A. Marsh,
W. B. Mori, C. Ren, J. Rosenzweig, F. Tsung, S. Wang
University of California, Los Angeles
R. Assmann, C. D. Barnes, F.-J. Decker, P. Emma, M. J. Hogan, R. Iverson,
P. Krejcik, C. O’Connell, P. Raimondi, R.H. Siemann, D. R. Walz
Stanford Linear Accelerator Center
Vacuum Laser Acceleration: LEAP, E-163
C. D. Barnes, E. R. Colby, B. M. Cowan, M. Javanmard, R. J. Noble,
D. T. Palmer, C. Sears, R. H. Siemann, J. E. Spencer, D. R. Walz
Stanford Linear Accelerator Center
R. L. Byer, T. Plettner, J. A. Wisdom
Stanford University
T. I. Smith, R. L. Swent
Hansen Experimental Physics Laboratory
Y.-C. Huang
National Tsing Hua University, Taiwan
L. Schächter
Technion Israeli Institute of Technology
Physical Principles of the Plasma
Wakefield Accelerator
• Space charge of drive beam displaces plasma electrons
-- -- -- ----- -----+----+- + + + + + + -+--+-- +--+----+--+ + + + + + + + + -+--+- +--+--+---+- + +
+
+-+- +++ +++ ++ ++++ +-++-+----+--+- ++++ ++++++++++ +++--+--+++ ++++ ++++ ++
---- ------- --- -- -- - - - -- -- - ---- -- - - - - -- --Ez
• Plasma ions exert restoring force => Space charge oscillations
• Wake Phase Velocity = Beam Velocity (like wake on a boat)
1
2
(
for
4




)
z
p
• Wake amplitude  N b  z
no
Electrons and Positrons in Plasmas
Radius
electron
eBlow-out
Radius
positron
e+
Flow-in
Z
The Afterburner Idea
�
�
�
�
50 GeV
Double the energy of Collider w/ short plasma sections before IP
1st half of beam excites wake --decelerates to 0
2nd half of beams rides wake--accelerates to 2 x Eo
Make up for Luminosity decrease N2/2 by halving  in a final
plasma lens
e-
LENSES
e+WFA
e-WFA
IP
50 GeV
e+
Experimental Layout for Beam Plasma Experiments
Located in the FFTB
Runs 2&3, Summer 2001
e+ acceleration, e- acceleration
E-162: Longitudinal Dynamics Part 4
Preliminary Energy Loss & Gain
ne=1.31014 (cm -3)
Relative Energy (MeV)
200
SliceEnergy Gain.g ra ph
ne=1.61014 (cm -3)
150
ne=2.01014 (cm -3)
100
ne=(2.3±0.1)1014 (cm -3)
50
0
-50
-100
-150
-200
-6
-2z
-z
-4
-2
+z
+2z
2
4
0
+3z
6
8
 (ps)
• Average energy loss (slice average): 159±40 MeV
• Average energy gain (slice average): 156 ±40 MeV
An e+e- Linear Collider
Linear Accelerator
e+
Power
Source
Final Focusing System
e-
Damping
Ring
L, ECM
Particle Source
Luminosity, Beam Power & Efficiency
1 N2
L
fc
4  x y
N  particles per bunch
 x ,  y  transverse beam sizes
Pb  Nfc mc 2
L  Pb
Pb   power sourceaccelerating structure
f c  collision frequency
Pb  single beam power
  energy in units of rest energy
PAC
2
  efficiency
Source Efficiency [%]
Efficiency and Scalability of Power Sources
Yb:KGd(WO4)2
=1.037m
Gt=112 fsec
Pave=1.3 W
=28%
SLAC PPM
Klystron
=2.624 cm
Gt=3 msec
Pave=27 kW
=65%
TUBES
FEMs
FELs
Eric Colby
10/15/2002
LASERS
(RF Compression, modulator
losses not included)
Carrier Phase-Lock of a Laser
Source Frequency [GHz]
M. Bellini, T Hansch, Optics
Letters, 25 (14), p.1049, (2000).
Carrier Phase-Locked Lasers
Diddams et al
“Direct Link between Microwave and Optical Frequencies with a 300 THz
Femtosecond Laser Comb”, Phys. Rev. Lett., 84 (22), p.5102, (2000).
Luminosity, Beam Power & Efficiency
1 N2
L
fc
4  x y
N  particles per bunch
 x ,  y  transverse beam sizes
Pb  Nfc mc 2
L  Pb
Pb   power sourceaccelerating structure
f c  collision frequency
Pb  single beam power
  energy in units of rest energy
PAC
2
  efficiency
Structure Efficiency
U beam qL  PZ C qcZ H 


 2 

U laser P  
 
q = 0,  0because no charge is accelerated G  G0
PZC 
q
cZ H
  max
 0because Gwake  G0 , G  0
L ZC

4 c Z H
/max
=0
when
 = max
q/qmax
q  qmax
PZC 

2cZ H
= 0
All the laser energy radiated
away into broad band
radiation
  max 
PBGFA Efficiency
q  qmax
X. Lin, Phys. Rev.
ST-AB, 4, 051301
(2001).
Z C  19.5
Z H  Z0
1
 130
2  r0 /  
r0  0.678  radius of beam tunnel
2
 g ZC
4Z H 1   g 
PZC 

2cZ H
P  30kW
  40 p sec
G0  0.77GeV / m
qmax  10.4 fC  6.5  104 e  ' s
max  5.2%
The estimate of ZH ignores the other air tunnels and the
frequency dependence of the dielectric constant
Charge Limit
1. There is a maximum charge/bunch based on
efficiency
2. It is uncertain because ZH is uncertain
• PBGFA: frequency dependence of 
• LEAP: multiple slit interference
3. Multiple beam bunches/laser pulse
• Required for high efficiency
• PBGFA:  is already long to fill
structure => make it slightly longer to
accelerate multiple bunches
• LEAP:  >> min => accelerate multiple
bunches or waste energy
q  qmax
PZ C 

2cZ H
104  105 e  ' s
Concluding Remarks
(But not for this talk)



Levi Schächter
10/11/02
Recycling (M. Tigner). All laser based schemes rely on the fact that a relatively
small fraction of the energy stored in the laser cavity is extracted and used in the
acceleration structure. Conceptually, it seems possible to take advantage of the
high intensity electromagnetic field that develops in the cavity and incorporate
the acceleration structure in the laser cavity.
According to estimates, the rep-rate of each macro-bunch is 1GHz and each
macro-bunch is modulated at the resonant frequency of the medium (e.g.
1.06mm).
The amount of energy transferred to the electrons or lost in the circuit is
compensated by the active medium that amplifies the narrow band wake generated
by the macro-bunch.
A Parameter List
Beam is assumed
debunched at the
IP
ECM = 500 GeV
N
fc
Pb (MW)
x/y (nm)
N
z (mm)
z/c (psec)

L
Laser
5106
50MHz
10
0.5/0.5
0.22
120
0.4
0.045
11034
JLC/NLC
9.5109
11.4kHz
4.5
330/5
1.1
300
1
0.11
5.11033
An e+e- Linear Collider
Linear Accelerator
e+
Power
Source
Final Focusing System
e-
Damping
Ring
L, ECM
Particle Source
Bunching & Phase Control
At  = 10 mm
STELLA (Staged Electron Laser Acceleration)
experiment at the BNL ATF
IF
E
L
A
C
C
E
L
E
R
A
T
O
R
IF
E
L
B
U
N
C
H
E
RB
P
B
P
M
E
L
E
C
T
R
O
N
S
P
E
C
T
R
O
M
E
T
E
R
B
P
M
F
o
c
u
s
n
i
g
q
u
a
d
u
rp
o
e
ls
S
e
t
e
n
i
r
g
c
o
l
i
Source: W. Kimura, I. Ben-Zvi.
B
P
M
Particle Source
10 MW @ 500 GeV 1.251014 particles/second
106 – 107/ 1 psec long bunch spaced at 50 MHz
~100 optically spaced bunches in the 1 psec bunch
Bunches spaced at
harmonic of 50
MHz
IFEL to bunch and
accelerate at 
Low energy for low I and to have
IFEL bunching
Do not know how to extract!
Continuous injection
Science 
Innovation
Advanced Accel. R&D